These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24591607)

  • 1. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators.
    Savoca MS; Nevitt GA
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4157-61. PubMed ID: 24591607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuroecology of dimethyl sulfide: a global-climate regulator turned marine infochemical.
    Nevitt GA
    Integr Comp Biol; 2011 Nov; 51(5):819-25. PubMed ID: 21880692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass.
    Owen K; Saeki K; Warren JD; Bocconcelli A; Wiley DN; Ohira SI; Bombosch A; Toda K; Zitterbart DP
    Commun Biol; 2021 Feb; 4(1):149. PubMed ID: 33526835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.
    Dani KGS; Loreto F
    Trends Plant Sci; 2017 May; 22(5):361-372. PubMed ID: 28242195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herbivore diet breadth mediates the cascading effects of carnivores in food webs.
    Singer MS; Lichter-Marck IH; Farkas TE; Aaron E; Whitney KD; Mooney KA
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9521-6. PubMed ID: 24979778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct iron cycling in a Southern Ocean eddy.
    Ellwood MJ; Strzepek RF; Strutton PG; Trull TW; Fourquez M; Boyd PW
    Nat Commun; 2020 Feb; 11(1):825. PubMed ID: 32047154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators' foraging areas in the Southern Ocean.
    Jaeger A; Lecomte VJ; Weimerskirch H; Richard P; Cherel Y
    Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3456-60. PubMed ID: 21072802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds.
    Nevitt GA; Bonadonna F
    Biol Lett; 2005 Sep; 1(3):303-5. PubMed ID: 17148193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron, phytoplankton growth, and the carbon cycle.
    Street JH; Paytan A
    Met Ions Biol Syst; 2005; 43():153-93. PubMed ID: 16370118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Community and ecosystem level consequences of chemical cues in the plankton.
    Hay ME; Kubanek J
    J Chem Ecol; 2002 Oct; 28(10):2001-16. PubMed ID: 12474896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The case against climate regulation via oceanic phytoplankton sulphur emissions.
    Quinn PK; Bates TS
    Nature; 2011 Nov; 480(7375):51-6. PubMed ID: 22129724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic asymmetry and the global diversity of marine predators.
    Grady JM; Maitner BS; Winter AS; Kaschner K; Tittensor DP; Record S; Smith FA; Wilson AM; Dell AI; Zarnetske PL; Wearing HJ; Alfaro B; Brown JH
    Science; 2019 Jan; 363(6425):. PubMed ID: 30679341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From plants to birds: higher avian predation rates in trees responding to insect herbivory.
    Mäntylä E; Alessio GA; Blande JD; Heijari J; Holopainen JK; Laaksonen T; Piirtola P; Klemola T
    PLoS One; 2008 Jul; 3(7):e2832. PubMed ID: 18665271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olfactory foraging in temperate waters: sensitivity to dimethylsulphide of shearwaters in the Atlantic Ocean and Mediterranean Sea.
    Dell'Ariccia G; Célérier A; Gabirot M; Palmas P; Massa B; Bonadonna F
    J Exp Biol; 2014 May; 217(Pt 10):1701-9. PubMed ID: 24526721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent trophic amplification of marine biomass declines under climate change.
    Kwiatkowski L; Aumont O; Bopp L
    Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide.
    Yoch DC
    Appl Environ Microbiol; 2002 Dec; 68(12):5804-15. PubMed ID: 12450799
    [No Abstract]   [Full Text] [Related]  

  • 18. Bacterial taxa that limit sulfur flux from the ocean.
    Howard EC; Henriksen JR; Buchan A; Reisch CR; Bürgmann H; Welsh R; Ye W; González JM; Mace K; Joye SB; Kiene RP; Whitman WB; Moran MA
    Science; 2006 Oct; 314(5799):649-52. PubMed ID: 17068264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton.
    Strzepek RF; Boyd PW; Sunda WG
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4388-4393. PubMed ID: 30787187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrients that limit growth in the ocean.
    Bristow LA; Mohr W; Ahmerkamp S; Kuypers MMM
    Curr Biol; 2017 Jun; 27(11):R474-R478. PubMed ID: 28586682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.