These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24591615)

  • 21. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.
    Kim N; Zheng Z; Elmetwaly S; Schlick T
    PLoS One; 2014; 9(9):e106074. PubMed ID: 25188578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complete probabilistic analysis of RNA shapes.
    Voss B; Giegerich R; Rehmsmeier M
    BMC Biol; 2006 Feb; 4():5. PubMed ID: 16480488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RAG-3D: a search tool for RNA 3D substructures.
    Zahran M; Sevim Bayrak C; Elmetwaly S; Schlick T
    Nucleic Acids Res; 2015 Oct; 43(19):9474-88. PubMed ID: 26304547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models.
    Huang H; Lin Z; He D; Hong L; Li Y
    Bioinformatics; 2024 Jun; 40(Suppl 1):i347-i356. PubMed ID: 38940178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design.
    Gan HH; Pasquali S; Schlick T
    Nucleic Acids Res; 2003 Jun; 31(11):2926-43. PubMed ID: 12771219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A statistical sampling algorithm for RNA secondary structure prediction.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulated Annealing for RNA Design with SIMARD.
    Tsang HH
    Methods Mol Biol; 2025; 2847():95-108. PubMed ID: 39312138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition.
    Zhao J; Malmberg RL; Cai L
    J Math Biol; 2008 Jan; 56(1-2):145-59. PubMed ID: 17906862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RAG: an update to the RNA-As-Graphs resource.
    Izzo JA; Kim N; Elmetwaly S; Schlick T
    BMC Bioinformatics; 2011 May; 12():219. PubMed ID: 21627789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.
    Boudard M; Bernauer J; Barth D; Cohen J; Denise A
    PLoS One; 2015; 10(8):e0136444. PubMed ID: 26313379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding recurrent RNA structural networks with fast maximal common subgraphs of edge-colored graphs.
    Soulé A; Reinharz V; Sarrazin-Gendron R; Denise A; Waldispühl J
    PLoS Comput Biol; 2021 May; 17(5):e1008990. PubMed ID: 34048427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tiling Nussinov's RNA folding loop nest with a space-time approach.
    Palkowski M; Bielecki W
    BMC Bioinformatics; 2019 Apr; 20(1):208. PubMed ID: 31014228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring Consensus RNA Substructural Patterns Using Subgraph Mining.
    Chen Q; Lan C; Chen B; Wang L; Li J; Zhang C
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1134-1146. PubMed ID: 28026781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures.
    Bleckley S; Stone JW; Schroeder SJ
    PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families.
    Reinharz V; Soulé A; Westhof E; Waldispühl J; Denise A
    Nucleic Acids Res; 2018 May; 46(8):3841-3851. PubMed ID: 29608773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling.
    Li J; Chen SJ
    Nucleic Acids Res; 2023 Apr; 51(7):3341-3356. PubMed ID: 36864729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.