BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24591729)

  • 1. Exposure levels due to WLAN devices in indoor environments corrected by a time-amplitude factor of distribution of the quasi-stochastic signals.
    Miclaus S; Bechet P; Stratakis D
    Radiat Prot Dosimetry; 2014 Dec; 162(4):536-43. PubMed ID: 24591729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procedure for assessment of general public exposure from WLAN in offices and in wireless sensor network testbed.
    Verloock L; Joseph W; Vermeeren G; Martens L
    Health Phys; 2010 Apr; 98(4):628-38. PubMed ID: 20220371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the duty cycle of WLAN for realistic radio frequency electromagnetic field exposure assessment.
    Joseph W; Pareit D; Vermeeren G; Naudts D; Verloock L; Martens L; Moerman I
    Prog Biophys Mol Biol; 2013 Jan; 111(1):30-6. PubMed ID: 23085070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factors of Wi-Fi devices operating in schools.
    Khalid M; Mee T; Peyman A; Addison D; Calderon C; Maslanyj M; Mann S
    Prog Biophys Mol Biol; 2011 Dec; 107(3):412-20. PubMed ID: 21856328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association between exposure determined by radiofrequency personal exposimeters and human exposure: a simulation study.
    Neubauer G; Cecil S; Giczi W; Petric B; Preiner P; Fröhlich J; Röösli M
    Bioelectromagnetics; 2010 Oct; 31(7):535-45. PubMed ID: 20564178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and comparison of downlink electric-field and uplink localised SAR values for realistic indoor wireless planning.
    Plets D; Joseph W; Aerts S; Vanhecke K; Vermeeren G; Martens L
    Radiat Prot Dosimetry; 2014 Dec; 162(4):487-98. PubMed ID: 24553049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure caused by wireless technologies used for short-range indoor communication in homes and offices.
    Schmid G; Lager D; Preiner P; Uberbacher R; Cecil S
    Radiat Prot Dosimetry; 2007; 124(1):58-62. PubMed ID: 17566000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term exposure to mobile communication radiation: an analysis of time-variability of electric field level in GSM900 downlink channels.
    Miclaus S; Bechet P; Gheorghevici M
    Radiat Prot Dosimetry; 2013 Apr; 154(2):164-73. PubMed ID: 22908352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiofrequency exposure from wireless LANs utilizing Wi-Fi technology.
    Foster KR
    Health Phys; 2007 Mar; 92(3):280-9. PubMed ID: 17293700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excessive exposure to radiofrequency electromagnetic fields may cause the development of electrohypersensitivity.
    Carpenter DO
    Altern Ther Health Med; 2014; 20(6):40-2. PubMed ID: 25478802
    [No Abstract]   [Full Text] [Related]  

  • 11. Assessment of general public exposure to LTE and RF sources present in an urban environment.
    Joseph W; Verloock L; Goeminne F; Vermeeren G; Martens L
    Bioelectromagnetics; 2010 Oct; 31(7):576-9. PubMed ID: 20607741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in electromagnetic field levels over time, and Monte-Carlo simulation of exposure parameters.
    Pachón-García FT; Paniagua-Sánchez JM; Rufo-Pérez M; Jiménez-Barco A
    Radiat Prot Dosimetry; 2014 Dec; 162(4):523-35. PubMed ID: 24594905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.
    Plets D; Joseph W; Vanhecke K; Vermeeren G; Wiart J; Aerts S; Varsier N; Martens L
    Biomed Res Int; 2015; 2015():943415. PubMed ID: 25793213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece.
    Vermeeren G; Markakis I; Goeminne F; Samaras T; Martens L; Joseph W
    Prog Biophys Mol Biol; 2013 Nov; 113(2):254-63. PubMed ID: 23872299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and measurement of the electromagnetic environment of high-power medium-wave and short-wave broadcast antennas in far field.
    Tang Z; Wang Q; Ji Z; Shi M; Hou G; Tan D; Wang P; Qiu X
    Radiat Prot Dosimetry; 2014 Dec; 162(4):478-86. PubMed ID: 24553048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological effects from electromagnetic field exposure and public exposure standards.
    Hardell L; Sage C
    Biomed Pharmacother; 2008 Feb; 62(2):104-9. PubMed ID: 18242044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASSESSMENT OF PUBLIC EXPOSURE FORM WLANS IN THE WEST BANK-PALESTINE.
    Lahham A; Sharabati A; ALMasri H
    Radiat Prot Dosimetry; 2017 Nov; 176(4):434-438. PubMed ID: 28338865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure assessment of microwave ovens and impact on total exposure in WLANs.
    Plets D; Verloock L; Van Den Bossche M; Tanghe E; Joseph W; Martens L
    Radiat Prot Dosimetry; 2016 Feb; 168(2):212-22. PubMed ID: 25956787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields.
    Bolte JF; van der Zande G; Kamer J
    Bioelectromagnetics; 2011 Dec; 32(8):652-63. PubMed ID: 21544843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the exposure to WLAN frequencies of a head model with a cochlear implant.
    Parazzini M; Sibella F; Paglialonga A; Ravazzani P
    Bioelectromagnetics; 2010 Oct; 31(7):546-55. PubMed ID: 20683910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.