These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24592429)

  • 21. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.
    MacCuspie RI; Rogers K; Patra M; Suo Z; Allen AJ; Martin MN; Hackley VA
    J Environ Monit; 2011 May; 13(5):1212-26. PubMed ID: 21416095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixture toxicity of the combinations of silver nanoparticles and environmental pollutants.
    Fukushima T; Jintana W; Okabe S
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6326-6337. PubMed ID: 31865577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila.
    Ávalos A; Haza AI; Drosopoulou E; Mavragani-Tsipidou P; Morales P
    Food Chem Toxicol; 2015 Nov; 85():114-9. PubMed ID: 26169716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Silver nanoparticles in natural water environment: Source, analysis and transformation].
    Yang YS; Wang C; Yuan XM; An CW; Yang XY
    Ying Yong Sheng Tai Xue Bao; 2017 Jun; 28(6):2073-2082. PubMed ID: 29745173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures.
    Tulve NS; Stefaniak AB; Vance ME; Rogers K; Mwilu S; LeBouf RF; Schwegler-Berry D; Willis R; Thomas TA; Marr LC
    Int J Hyg Environ Health; 2015 May; 218(3):345-57. PubMed ID: 25747543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans.
    Meyer JN; Lord CA; Yang XY; Turner EA; Badireddy AR; Marinakos SM; Chilkoti A; Wiesner MR; Auffan M
    Aquat Toxicol; 2010 Oct; 100(2):140-50. PubMed ID: 20708279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems.
    Kwak JI; Cui R; Nam SH; Kim SW; Chae Y; An YJ
    Nanotoxicology; 2016; 10(5):521-30. PubMed ID: 26634622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy.
    Guo H; Xing B; He L
    Environ Pollut; 2016 Apr; 211():198-205. PubMed ID: 26774766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants.
    Behzadi Tayemeh M; Esmailbeigi M; Shirdel I; Joo HS; Johari SA; Banan A; Nourani H; Mashhadi H; Jami MJ; Tabarrok M
    Chemosphere; 2020 Jan; 238():124576. PubMed ID: 31421462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of biomarker for detecting silver nanoparticles exposure using a GAL4 enhancer trap screening in Drosophila.
    Tian H; Eom HJ; Moon S; Lee J; Choi J; Chung YD
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):548-556. PubMed ID: 23827194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.
    Bolea E; Jiménez-Lamana J; Laborda F; Abad-Álvaro I; Bladé C; Arola L; Castillo JR
    Analyst; 2014 Mar; 139(5):914-22. PubMed ID: 24162133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic toxicity of cationic silver nanoparticles.
    Gitipour A; Thiel SW; Scheckel KG; Tolaymat T
    Sci Total Environ; 2016 Jul; 557-558():363-8. PubMed ID: 27016684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis.
    Shi JP; Ma CY; Xu B; Zhang HW; Yu CP
    Environ Toxicol Chem; 2012 Jul; 31(7):1630-8. PubMed ID: 22553075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speciation of nano and ionic form of silver with capillary electrophoresis-inductively coupled plasma mass spectrometry.
    Michalke B; Vinković-Vrček I
    J Chromatogr A; 2018 Oct; 1572():162-171. PubMed ID: 30146375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor.
    You F; Tang W; Yung LL
    Nanoscale; 2018 Apr; 10(16):7726-7735. PubMed ID: 29658041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity.
    Sharma VK; Siskova KM; Zboril R; Gardea-Torresdey JL
    Adv Colloid Interface Sci; 2014 Feb; 204():15-34. PubMed ID: 24406050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel approach for controlling resistant Listeria monocytogenes to antimicrobials using different disinfectants types loaded on silver nanoparticles (AgNPs).
    Mohammed AN; Abdel Aziz SAA
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1954-1961. PubMed ID: 30460655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.