These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24592441)

  • 1. Extracellular conversion of silver ions into silver nanoparticles by protozoan Tetrahymena thermophila.
    Juganson K; Mortimer M; Ivask A; Kasemets K; Kahru A
    Environ Sci Process Impacts; 2013 Jan; 15(1):244-50. PubMed ID: 24592441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events.
    Juganson K; Mortimer M; Ivask A; Pucciarelli S; Miceli C; Orupõld K; Kahru A
    Environ Pollut; 2017 Jun; 225():481-489. PubMed ID: 28318795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic effects of silver nanoparticles and ionic silver in Tetrahymena thermophila.
    Pan Y; Lin S; Zhang W
    Sci Total Environ; 2021 May; 768():144659. PubMed ID: 33736311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data.
    Jemec A; Kahru A; Potthoff A; Drobne D; Heinlaan M; Böhme S; Geppert M; Novak S; Schirmer K; Rekulapally R; Singh S; Aruoja V; Sihtmäe M; Juganson K; Käkinen A; Kühnel D
    Environ Int; 2016 Feb; 87():20-32. PubMed ID: 26638016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of organic matter on the trophic transfer of silver nanoparticles in an aquatic food chain.
    Liang D; Fan W; Wu Y; Wang Y
    J Hazard Mater; 2022 Sep; 438():129521. PubMed ID: 35816795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2 nanoparticles act as a carrier of Cd bioaccumulation in the ciliate Tetrahymena thermophila.
    Yang WW; Wang Y; Huang B; Wang NX; Wei ZB; Luo J; Miao AJ; Yang LY
    Environ Sci Technol; 2014 Jul; 48(13):7568-75. PubMed ID: 24912115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic responses to silver nanoparticles in the freshwater unicellular eukaryote Tetrahymena thermophila.
    Piersanti A; Juganson K; Mozzicafreddo M; Wei W; Zhang J; Zhao K; Ballarini P; Mortimer M; Pucciarelli S; Miao W; Miceli C
    Environ Pollut; 2021 Jan; 269():115965. PubMed ID: 33213949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila.
    Mortimer M; Kasemets K; Kahru A
    Toxicology; 2010 Mar; 269(2-3):182-9. PubMed ID: 19622384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus.
    Santhoshkumar T; Rahuman AA; Bagavan A; Marimuthu S; Jayaseelan C; Kirthi AV; Kamaraj C; Rajakumar G; Zahir AA; Elango G; Velayutham K; Iyappan M; Siva C; Karthik L; Rao KV
    Exp Parasitol; 2012 Oct; 132(2):156-65. PubMed ID: 22750410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.
    Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C
    Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable biogenic synthesis of intracellular silver/silver chloride nanoparticles by
    Alamri SAM; Hashem M; Nafady NA; Sayed MA; Alshehri AM; El-Alshaboury GA
    J Microbiol Biotechnol; 2018 Jun; 28(6):917-930. PubMed ID: 29847861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates.
    Neihaya HZ; Zaman HH
    Microb Pathog; 2018 Mar; 116():200-208. PubMed ID: 29414608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity.
    Sahu N; Soni D; Chandrashekhar B; Sarangi BK; Satpute D; Pandey RA
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):999-1004. PubMed ID: 23111848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa.
    Mortimer M; Gogos A; Bartolomé N; Kahru A; Bucheli TD; Slaveykova VI
    Environ Sci Technol; 2014; 48(15):8760-7. PubMed ID: 25000358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences.
    Aude-Garcia C; Villiers F; Collin-Faure V; Pernet-Gallay K; Jouneau PH; Sorieul S; Mure G; Gerdil A; Herlin-Boime N; Carrière M; Rabilloud T
    Nanotoxicology; 2016; 10(5):586-96. PubMed ID: 26554598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).
    Zouzelka R; Cihakova P; Rihova Ambrozova J; Rathousky J
    Environ Sci Pollut Res Int; 2016 May; 23(9):8317-26. PubMed ID: 26951220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.
    Zhang L; He Y; Goswami N; Xie J; Zhang B; Tao X
    Chemosphere; 2016 Jun; 153():322-31. PubMed ID: 27023120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.