These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24592442)
1. Modeling the flows of engineered nanomaterials during waste handling. Mueller NC; Buha J; Wang J; Ulrich A; Nowack B Environ Sci Process Impacts; 2013 Jan; 15(1):251-9. PubMed ID: 24592442 [TBL] [Abstract][Full Text] [Related]
2. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Hincapié I; Caballero-Guzman A; Hiltbrunner D; Nowack B Waste Manag; 2015 Sep; 43():398-406. PubMed ID: 26164852 [TBL] [Abstract][Full Text] [Related]
3. The release of engineered nanomaterials to the environment. Gottschalk F; Nowack B J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Sun TY; Bornhöft NA; Hungerbühler K; Nowack B Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743 [TBL] [Abstract][Full Text] [Related]
5. Fate of nano titanium dioxide during combustion of engineered nanomaterial-containing waste in a municipal solid waste incineration plant. Oischinger J; Meiller M; Daschner R; Hornung A; Warnecke R Waste Manag Res; 2019 Oct; 37(10):1033-1042. PubMed ID: 31345141 [TBL] [Abstract][Full Text] [Related]
6. Flows of engineered nanomaterials through the recycling process in Switzerland. Caballero-Guzman A; Sun T; Nowack B Waste Manag; 2015 Feb; 36():33-43. PubMed ID: 25524750 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Sun TY; Gottschalk F; Hungerbühler K; Nowack B Environ Pollut; 2014 Feb; 185():69-76. PubMed ID: 24220022 [TBL] [Abstract][Full Text] [Related]
8. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
9. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Som C; Wick P; Krug H; Nowack B Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331 [TBL] [Abstract][Full Text] [Related]
10. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. Sun TY; Mitrano DM; Bornhöft NA; Scheringer M; Hungerbühler K; Nowack B Environ Sci Technol; 2017 Mar; 51(5):2854-2863. PubMed ID: 28157288 [TBL] [Abstract][Full Text] [Related]
11. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Gottschalk F; Lassen C; Kjoelholt J; Christensen F; Nowack B Int J Environ Res Public Health; 2015 May; 12(5):5581-602. PubMed ID: 26006129 [TBL] [Abstract][Full Text] [Related]
12. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range. Buha J; Mueller N; Nowack B; Ulrich A; Losert S; Wang J Environ Sci Technol; 2014 May; 48(9):4765-73. PubMed ID: 24720846 [TBL] [Abstract][Full Text] [Related]
13. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Gottschalk F; Sun T; Nowack B Environ Pollut; 2013 Oct; 181():287-300. PubMed ID: 23856352 [TBL] [Abstract][Full Text] [Related]
14. A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling? Caballero-Guzman A; Nowack B Environ Pollut; 2016 Jun; 213():502-517. PubMed ID: 26970875 [TBL] [Abstract][Full Text] [Related]
15. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management. Heggelund L; Hansen SF; Astrup TF; Boldrin A Waste Manag; 2016 Oct; 56():584-92. PubMed ID: 27311351 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
17. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Gottschalk F; Kost E; Nowack B Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073 [TBL] [Abstract][Full Text] [Related]
18. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512 [TBL] [Abstract][Full Text] [Related]
19. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector. Suzuki S; Part F; Matsufuji Y; Huber-Humer M Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056 [TBL] [Abstract][Full Text] [Related]
20. Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management. Klein R; Baumann T; Kahapka E; Niessner R J Hazard Mater; 2001 May; 83(3):265-80. PubMed ID: 11348737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]