These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24593164)

  • 1. Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect.
    Gottis S; Barrès AL; Dolhem F; Poizot P
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10870-6. PubMed ID: 24593164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution.
    Jouhara A; Dupré N; Gaillot AC; Guyomard D; Dolhem F; Poizot P
    Nat Commun; 2018 Oct; 9(1):4401. PubMed ID: 30353001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.
    Chen H; Armand M; Courty M; Jiang M; Grey CP; Dolhem F; Tarascon JM; Poizot P
    J Am Chem Soc; 2009 Jul; 131(25):8984-8. PubMed ID: 19476355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-potential reversible Li deintercalation in a substituted tetrahydroxy-p-benzoquinone dilithium salt: an experimental and theoretical study.
    Barrès AL; Geng J; Bonnard G; Renault S; Gottis S; Mentré O; Frayret C; Dolhem F; Poizot P
    Chemistry; 2012 Jul; 18(28):8800-12. PubMed ID: 22689440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries.
    Lu Y; Zhang Q; Li F; Chen J
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216047. PubMed ID: 36445787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials.
    Islam MM; Ostadhossein A; Borodin O; Yeates AT; Tipton WW; Hennig RG; Kumar N; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3383-93. PubMed ID: 25529209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical activity of Samarium on starch-derived porous carbon: rechargeable Li- and Al-ion batteries.
    Zhang K; Lee TH; Choi MJ; Rajabi-Abhari A; Choi S; Choi KS; Varma RS; Choi JW; Jang HW; Shokouhimehr M
    Nano Converg; 2020 Mar; 7(1):11. PubMed ID: 32189134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries.
    Wang HG; Ma DL; Huang Y; Zhang XB
    Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.
    Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF
    Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.
    Hameed AS; Reddy MV; Nagarathinam M; Runčevski T; Dinnebier RE; Adams S; Chowdari BV; Vittal JJ
    Sci Rep; 2015 Nov; 5():16270. PubMed ID: 26593096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations.
    Carvalho RP; Marchiori CFN; Brandell D; Araujo CM
    ChemSusChem; 2020 May; 13(9):2402-2409. PubMed ID: 32061037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.