These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24593367)

  • 1. Photothermal excitation setup for a modified commercial atomic force microscope.
    Adam H; Rode S; Schreiber M; Kobayashi K; Yamada H; Kühnle A
    Rev Sci Instrum; 2014 Feb; 85(2):023703. PubMed ID: 24593367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment.
    Rode S; Stark R; Lübbe J; Tröger L; Schütte J; Umeda K; Kobayashi K; Yamada H; Kühnle A
    Rev Sci Instrum; 2011 Jul; 82(7):073703. PubMed ID: 21806185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy.
    Fukuma T
    Rev Sci Instrum; 2009 Feb; 80(2):023707. PubMed ID: 19256653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-low noise optical head for liquid environment atomic force microscopy.
    Schlesinger I; Kuchuk K; Sivan U
    Rev Sci Instrum; 2015 Aug; 86(8):083705. PubMed ID: 26329201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
    Kocun M; Labuda A; Gannepalli A; Proksch R
    Rev Sci Instrum; 2015 Aug; 86(8):083706. PubMed ID: 26329202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
    Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H
    Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments.
    Labuda A; Kobayashi K; Miyahara Y; Grütter P
    Rev Sci Instrum; 2012 May; 83(5):053703. PubMed ID: 22667621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifrequency force microscopy using flexural and torsional modes by photothermal excitation in liquid: atomic resolution imaging of calcite (1014).
    Meier T; Eslami B; Solares SD
    Nanotechnology; 2016 Feb; 27(8):085702. PubMed ID: 26807504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies.
    Fukuma T; Onishi K; Kobayashi N; Matsuki A; Asakawa H
    Nanotechnology; 2012 Apr; 23(13):135706. PubMed ID: 22421199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutting down the forest of peaks in acoustic dynamic atomic force microscopy in liquid.
    Carrasco C; Ares P; de Pablo PJ; Gómez-Herrero J
    Rev Sci Instrum; 2008 Dec; 79(12):126106. PubMed ID: 19123597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.
    Çelik Ü; Karcı Ö; Uysallı Y; Özer HÖ; Oral A
    Rev Sci Instrum; 2017 Jan; 88(1):013705. PubMed ID: 28147654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids.
    Rasool HI; Wilkinson PR; Stieg AZ; Gimzewski JK
    Rev Sci Instrum; 2010 Feb; 81(2):023703. PubMed ID: 20192498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sensitivity of nanoscale subsurface imaging by photothermal excitation in atomic force microscopy.
    Yip K; Cui T; Filleter T
    Rev Sci Instrum; 2020 Jun; 91(6):063703. PubMed ID: 32611036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical characterization of micro cantilevers by different excitation methods in dynamic atomic force microscopy.
    Tan X; Shi S; Guo D; Luo J
    Rev Sci Instrum; 2018 Nov; 89(11):115109. PubMed ID: 30501321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy.
    Kobayashi K; Yamada H; Matsushige K
    Rev Sci Instrum; 2011 Mar; 82(3):033702. PubMed ID: 21456746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kelvin force microscopy at the second cantilever resonance: an out-of-vacuum crosstalk compensation setup.
    Diesinger H; Deresmes D; Nys JP; Mélin T
    Ultramicroscopy; 2008 Jul; 108(8):773-81. PubMed ID: 18342448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids.
    Kiracofe D; Kobayashi K; Labuda A; Raman A; Yamada H
    Rev Sci Instrum; 2011 Jan; 82(1):013702. PubMed ID: 21280832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of a dynamic scanning force microscope for highest resolution imaging in ultrahigh vacuum.
    Torbrügge S; Lübbe J; Tröger L; Cranney M; Eguchi T; Hasegawa Y; Reichling M
    Rev Sci Instrum; 2008 Aug; 79(8):083701. PubMed ID: 19044351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids.
    Hoogenboom BW; Frederix PL; Fotiadis D; Hug HJ; Engel A
    Nanotechnology; 2008 Sep; 19(38):384019. PubMed ID: 21832578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal cantilever actuation for fast single-molecule force spectroscopy.
    Stahl SW; Puchner EM; Gaub HE
    Rev Sci Instrum; 2009 Jul; 80(7):073702. PubMed ID: 19655951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.