BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24593376)

  • 1. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision.
    Gerberding O; Diekmann C; Kullmann J; Tröbs M; Bykov I; Barke S; Brause NC; Esteban Delgado JJ; Schwarze TS; Reiche J; Danzmann K; Rasmussen T; Hansen TV; Enggaard A; Pedersen SM; Jennrich O; Suess M; Sodnik Z; Heinzel G
    Rev Sci Instrum; 2015 Jul; 86(7):074501. PubMed ID: 26233398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phasemeter concept for space applications that integrates an autonomous signal acquisition stage based on the discrete wavelet transform.
    Ales F; Mandel O; Gath P; Johann U; Braxmaier C
    Rev Sci Instrum; 2015 Aug; 86(8):084502. PubMed ID: 26329214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection.
    Ming M; Zhang J; Duan H; Li Z; Huang X; Tu L; Yeh HC
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.
    Dong YH; Liu HS; Luo ZR; Li YQ; Jin G
    Rev Sci Instrum; 2014 Jul; 85(7):074501. PubMed ID: 25085155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters.
    Hsu MT; Littler IC; Shaddock DA; Herrmann J; Warrington RB; Gray MB
    Opt Lett; 2010 Dec; 35(24):4202-4. PubMed ID: 21165137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry.
    Jiang YZ; Jin XL; Yeh HC; Liang YR
    Opt Express; 2021 Jun; 29(12):18336-18350. PubMed ID: 34154092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: A new method for directly reducing the sampling jitter noise of the digital phasemeter.
    Liang YR
    Rev Sci Instrum; 2018 Mar; 89(3):036106. PubMed ID: 29604779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.
    Sweeney D; Mueller G
    Opt Express; 2012 Nov; 20(23):25603-12. PubMed ID: 23187379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced phasemeter for deep phase modulation interferometry.
    Schwarze TS; Gerberding O; Cervantes FG; Heinzel G; Danzmann K
    Opt Express; 2014 Jul; 22(15):18214-23. PubMed ID: 25089440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verification of Laser Heterodyne Interferometric Bench for Chinese Spaceborne Gravitational Wave Detection Missions.
    Xu X; Liu H; Tan Y
    Research (Wash D C); 2024; 7():0302. PubMed ID: 38357699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of deep frequency modulation interferometry.
    Isleif KS; Gerberding O; Schwarze TS; Mehmet M; Heinzel G; Cervantes FG
    Opt Express; 2016 Jan; 24(2):1676-84. PubMed ID: 26832546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beat-Notes Acquisition of Laser Heterodyne Interference Signal for Space Gravitational Wave Detection.
    Wang Z; Yu T; Sui Y; Wang Z
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced inter-spacecraft offset frequency setting strategy for the Taiji program based on a two-stage optimization algorithm.
    Zhang J; Ma X; Zhao M; Peng X; Gao C; Yang Z
    Appl Opt; 2023 Jun; 62(16):4370-4380. PubMed ID: 37706930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a phasemeter for real-time measurements of the average plasma density with the microwave interferometer of the tokamak T-15MD.
    Drozd A; Sergeev D
    Rev Sci Instrum; 2022 Jun; 93(6):063501. PubMed ID: 35778047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picometer level displacement metrology with digitally enhanced heterodyne interferometry.
    de Vine G; Rabeling DS; Slagmolen BJ; Lam TT; Chua S; Wuchenich DM; McClelland DE; Shaddock DA
    Opt Express; 2009 Jan; 17(2):828-37. PubMed ID: 19158897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Detection Precision of the Taiji Program by Frequency Setting Strategy Based on a Hierarchical Optimization Algorithm.
    Zhang J; Yang Z; Ma X; Peng X; Gao C; Zhao M; Tang W
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop.
    Dennis T; Hale PD
    Opt Express; 2011 Oct; 19(21):20103-14. PubMed ID: 21997021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.