BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24593730)

  • 1. X-ray scatter correction in breast tomosynthesis with a precomputed scatter map library.
    Feng SS; D'Orsi CJ; Newell MS; Seidel RL; Patel B; Sechopoulos I
    Med Phys; 2014 Mar; 41(3):031912. PubMed ID: 24593730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.
    Pinto MC; Mauter F; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 Aug; 50(8):4744-4757. PubMed ID: 37394837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scatter radiation in digital tomosynthesis of the breast.
    Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi CJ; Karellas A
    Med Phys; 2007 Feb; 34(2):564-76. PubMed ID: 17388174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.
    Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC
    Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of scatter effects on image quality for breast tomosynthesis.
    Wu G; Mainprize JG; Boone JM; Yaffe MJ
    Med Phys; 2009 Oct; 36(10):4425-32. PubMed ID: 19928073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of one-view digital breast tomosynthesis with one-view digital mammography versus standard two-view digital mammography: per lesion analysis.
    Gennaro G; Hendrick RE; Toledano A; Paquelet JR; Bezzon E; Chersevani R; di Maggio C; La Grassa M; Pescarini L; Polico I; Proietti A; Baldan E; Pomerri F; Muzzio PC
    Eur Radiol; 2013 Aug; 23(8):2087-94. PubMed ID: 23620367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.
    Shaheen E; Van Ongeval C; Zanca F; Cockmartin L; Marshall N; Jacobs J; Young KC; R Dance D; Bosmans H
    Med Phys; 2011 Dec; 38(12):6659-71. PubMed ID: 22149848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a variable dose acquisition technique for microcalcification and mass detection in digital breast tomosynthesis.
    Das M; Gifford HC; O'Connor JM; Glick SJ
    Med Phys; 2009 Jun; 36(6):1976-84. PubMed ID: 19610286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.
    Sahiner B; Chan HP; Hadjiiski LM; Helvie MA; Wei J; Zhou C; Lu Y
    Med Phys; 2012 Jan; 39(1):28-39. PubMed ID: 22225272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Library based x-ray scatter correction for dedicated cone beam breast CT.
    Shi L; Vedantham S; Karellas A; Zhu L
    Med Phys; 2016 Aug; 43(8):4529. PubMed ID: 27487870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.
    Sechopoulos I; Bliznakova K; Fei B
    Med Phys; 2013 Oct; 40(10):101905. PubMed ID: 24089907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis.
    Saunders RS; Samei E; Lo JY; Baker JA
    Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scatter correction method for contrast-enhanced dual-energy digital breast tomosynthesis.
    Lu Y; Peng B; Lau BA; Hu YH; Scaduto DA; Zhao W; Gindi G
    Phys Med Biol; 2015 Aug; 60(16):6323-54. PubMed ID: 26237154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A scatter correction method for dual-energy digital mammography: Monte Carlo simulation.
    Ai K; Gao Y; Yu G
    J Xray Sci Technol; 2014; 22(5):653-71. PubMed ID: 25265925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual-search observers for assessing tomographic x-ray image quality.
    Gifford HC; Liang Z; Das M
    Med Phys; 2016 Mar; 43(3):1563-75. PubMed ID: 26936739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.