These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24594042)

  • 1. Designing transparent superamphiphobic coatings directed by carbon nanotubes.
    Zhu X; Zhang Z; Ren G; Men X; Ge B; Zhou X
    J Colloid Interface Sci; 2014 May; 421():141-5. PubMed ID: 24594042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes.
    Zhang J; Yu B; Gao Z; Li B; Zhao X
    Langmuir; 2017 Jan; 33(2):510-518. PubMed ID: 28025880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes.
    Zhai N; Fan L; Li L; Zhang J
    J Colloid Interface Sci; 2017 Nov; 505():622-630. PubMed ID: 28651202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation.
    Zhang J; Yu B; Wei Q; Li B; Li L; Yang Y
    J Colloid Interface Sci; 2019 Oct; 554():250-259. PubMed ID: 31301525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent and durable superhydrophobic coatings for anti-bioadhesion.
    Zhao X; Yu B; Zhang J
    J Colloid Interface Sci; 2017 Sep; 501():222-230. PubMed ID: 28456106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candle soot as a template for a transparent robust superamphiphobic coating.
    Deng X; Mammen L; Butt HJ; Vollmer D
    Science; 2012 Jan; 335(6064):67-70. PubMed ID: 22144464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods.
    Dong J; Wang Q; Zhang Y; Zhu Z; Xu X; Zhang J; Wang A
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1941-1952. PubMed ID: 28001033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional superamphiphobic TiO2 nanostructure surfaces with facile wettability and adhesion engineering.
    Huang JY; Lai YK; Pan F; Yang L; Wang H; Zhang KQ; Fuchs H; Chi LF
    Small; 2014 Dec; 10(23):4865-73. PubMed ID: 25070619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.
    Li F; Du M; Zheng Q
    ACS Nano; 2016 Feb; 10(2):2910-21. PubMed ID: 26828414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles.
    Lee SG; Ham DS; Lee DY; Bong H; Cho K
    Langmuir; 2013 Dec; 29(48):15051-7. PubMed ID: 24224524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile fabrication of a superamphiphobic surface on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile one-step photolithographic method for engineering hierarchically nano/microstructured transparent superamphiphobic surfaces.
    Li T; Paliy M; Wang X; Kobe B; Lau WM; Yang J
    ACS Appl Mater Interfaces; 2015 May; 7(20):10988-92. PubMed ID: 25942618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic Superamphiphobic Coatings and the Effect of Surface Microstructures on Superamphiphobicity.
    Liu G; Xia H; Zhang W; Lang L; Geng H; Song L; Niu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12509-12520. PubMed ID: 33653025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages.
    Wang H; Zhou H; Gestos A; Fang J; Lin T
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10221-6. PubMed ID: 24073919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles.
    Wang T; Lv C; Ji L; He X; Wang S
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49155-49164. PubMed ID: 32915528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings.
    Tian N; Zhang P; Zhang J
    Front Chem; 2018; 6():144. PubMed ID: 29761099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Independent Hierarchical Coatings with Superamphiphobic Properties.
    Schlaich C; Cuellar Camacho L; Yu L; Achazi K; Wei Q; Haag R
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29117-29127. PubMed ID: 27714994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.
    Xu L; He J
    Langmuir; 2012 May; 28(19):7512-8. PubMed ID: 22533369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.
    Xiong L; Kendrick LL; Heusser H; Webb JC; Sparks BJ; Goetz JT; Guo W; Stafford CM; Blanton MD; Nazarenko S; Patton DL
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10763-74. PubMed ID: 24911278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.