BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24594390)

  • 1. Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery.
    Badowiec A; Weidner S
    J Plant Physiol; 2014 Mar; 171(6):389-98. PubMed ID: 24594390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.
    Badowiec A; Swigonska S; Weidner S
    Plant Physiol Biochem; 2013 Oct; 71():315-24. PubMed ID: 24012770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of response to long-term continuous stress in roots of germinating soybean seeds.
    Swigonska S; Weidner S
    J Plant Physiol; 2013 Mar; 170(5):470-9. PubMed ID: 23394790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chilling stress-induced proteomic changes in rice roots.
    Lee DG; Ahsan N; Lee SH; Lee JJ; Bahk JD; Kang KY; Lee BH
    J Plant Physiol; 2009 Jan; 166(1):1-11. PubMed ID: 18433929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling.
    Zadražnik T; Egge-Jacobsen W; Meglič V; Šuštar-Vozlič J
    J Plant Physiol; 2017 Feb; 209():42-50. PubMed ID: 28013170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination.
    López-Pedrouso M; Alonso J; Zapata C
    Plant Mol Biol; 2014 Mar; 84(4-5):415-28. PubMed ID: 24142381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress.
    Vernieri P; Lenzi A; Figaro M; Tognoni F; Pardossi A
    J Exp Bot; 2001 Nov; 52(364):2199-206. PubMed ID: 11604459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach.
    Li J; Sun J; Yang Y; Guo S; Glick BR
    Plant Physiol Biochem; 2012 Feb; 51():74-80. PubMed ID: 22153242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds.
    De La Fuente M; Borrajo A; Bermúdez J; Lores M; Alonso J; López M; Santalla M; De Ron AM; Zapata C; Alvarez G
    J Proteomics; 2011 Feb; 74(2):262-7. PubMed ID: 20971221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.).
    Zadražnik T; Hollung K; Egge-Jacobsen W; Meglič V; Šuštar-Vozlič J
    J Proteomics; 2013 Jan; 78():254-72. PubMed ID: 23026550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation.
    Farooq M; Hussain M; Nawaz A; Lee DJ; Alghamdi SS; Siddique KHM
    Plant Physiol Biochem; 2017 Feb; 111():274-283. PubMed ID: 27987472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.
    Blair MW; Knewtson SJ; Astudillo C; Li CM; Fernandez AC; Grusak MA
    BMC Plant Biol; 2010 Oct; 10():215. PubMed ID: 20923552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of three fatty acid desaturase genes from cold-sensitive lima bean (Phaseolus lunatus L.).
    Zhang YM; Wang CC; Hu HH; Yang L
    Biotechnol Lett; 2011 Feb; 33(2):395-401. PubMed ID: 20953666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the proteome of common bean (Phaseolus vulgaris L.) roots after inoculation with Rhizobium etli.
    Salavati A; Taleei A; Bushehri AA; Komatsu S
    Protein Pept Lett; 2012 Aug; 19(8):880-9. PubMed ID: 22762188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis provides new insights into chilling stress responses in rice.
    Yan SP; Zhang QY; Tang ZC; Su WA; Sun WN
    Mol Cell Proteomics; 2006 Mar; 5(3):484-96. PubMed ID: 16316980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox
    Sghaier-Hammami B; B M Hammami S; Baazaoui N; Gómez-Díaz C; Jorrín-Novo JV
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves.
    Li F; Shi J; Shen C; Chen G; Hu S; Chen Y
    Plant Mol Biol; 2009 Oct; 71(3):251-63. PubMed ID: 19629718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root proteomics reveals cucumber 24-epibrassinolide responses under Ca(NO3)2 stress.
    An Y; Zhou H; Zhong M; Sun J; Shu S; Shao Q; Guo S
    Plant Cell Rep; 2016 May; 35(5):1081-101. PubMed ID: 26931454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions.
    Li G; Peng X; Xuan H; Wei L; Yang Y; Guo T; Kang G
    J Proteome Res; 2013 Nov; 12(11):4846-61. PubMed ID: 24074260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.