These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Antioxidant and photoprotective responses to elevated CO(2) and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy). Pintó-Marijuan M; Joffre R; Casals I; De Agazio M; Zacchini M; García-Plazaola JI; Esteban R; Aranda X; Guàrdia M; Fleck I Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():5-17. PubMed ID: 22243620 [TBL] [Abstract][Full Text] [Related]
6. Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings. Ghouil H; Montpied P; Epron D; Ksontini M; Hanchi B; Dreyer E Tree Physiol; 2003 Oct; 23(15):1031-9. PubMed ID: 12975127 [TBL] [Abstract][Full Text] [Related]
7. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? Correia B; Valledor L; Meijón M; Rodriguez JL; Dias MC; Santos C; Cañal MJ; Rodriguez R; Pinto G PLoS One; 2013; 8(1):e53543. PubMed ID: 23326451 [TBL] [Abstract][Full Text] [Related]
8. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR. Soler M; Serra O; Molinas M; García-Berthou E; Caritat A; Figueras M Tree Physiol; 2008 May; 28(5):743-51. PubMed ID: 18316306 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Costa ML; Sobral R; Ribeiro Costa MM; Amorim MI; Coimbra S Ann Bot; 2015 Jan; 115(1):81-92. PubMed ID: 25452249 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues. Almeida T; Menéndez E; Capote T; Ribeiro T; Santos C; Gonçalves S J Plant Physiol; 2013 Jan; 170(2):172-8. PubMed ID: 23218545 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the cork oak transcriptome dynamics during acorn development. Miguel A; de Vega-Bartol J; Marum L; Chaves I; Santo T; Leitão J; Varela MC; Miguel CM BMC Plant Biol; 2015 Jun; 15():158. PubMed ID: 26109289 [TBL] [Abstract][Full Text] [Related]
12. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). Capote T; Barbosa P; Usié A; Ramos AM; Inácio V; Ordás R; Gonçalves S; Morais-Cecílio L BMC Plant Biol; 2018 Sep; 18(1):198. PubMed ID: 30223777 [TBL] [Abstract][Full Text] [Related]
13. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Ramírez-Valiente JA; Koehler K; Cavender-Bares J Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867 [TBL] [Abstract][Full Text] [Related]
14. Insights of carbon assimilation and allocation in young cork oak (Quercus suber L.) plants using Carbon-14. Nóbrega C; Marques H; Moreira T Physiol Plant; 2020 Mar; 168(3):725-735. PubMed ID: 31381158 [No Abstract] [Full Text] [Related]
15. A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. Pereira-Leal JB; Abreu IA; Alabaça CS; Almeida MH; Almeida P; Almeida T; Amorim MI; Araújo S; Azevedo H; Badia A; Batista D; Bohn A; Capote T; Carrasquinho I; Chaves I; Coelho AC; Costa MM; Costa R; Cravador A; Egas C; Faro C; Fortes AM; Fortunato AS; Gaspar MJ; Gonçalves S; Graça J; Horta M; Inácio V; Leitão JM; Lino-Neto T; Marum L; Matos J; Mendonça D; Miguel A; Miguel CM; Morais-Cecílio L; Neves I; Nóbrega F; Oliveira MM; Oliveira R; Pais MS; Paiva JA; Paulo OS; Pinheiro M; Raimundo JA; Ramalho JC; Ribeiro AI; Ribeiro T; Rocheta M; Rodrigues AI; Rodrigues JC; Saibo NJ; Santo TE; Santos AM; Sá-Pereira P; Sebastiana M; Simões F; Sobral RS; Tavares R; Teixeira R; Varela C; Veloso MM; Ricardo CP BMC Genomics; 2014 May; 15(1):371. PubMed ID: 24885229 [TBL] [Abstract][Full Text] [Related]
16. Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Aranda I; Pardos M; Puértolas J; Jiménez MD; Pardos JA Tree Physiol; 2007 May; 27(5):671-7. PubMed ID: 17267358 [TBL] [Abstract][Full Text] [Related]
17. Reference gene selection for quantitative real-time PCR normalization in Quercus suber. Marum L; Miguel A; Ricardo CP; Miguel C PLoS One; 2012; 7(4):e35113. PubMed ID: 22529976 [TBL] [Abstract][Full Text] [Related]
18. Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue. Teixeira RT; Fortes AM; Pinheiro C; Pereira H J Exp Bot; 2014 Sep; 65(17):4887-905. PubMed ID: 24958897 [TBL] [Abstract][Full Text] [Related]
19. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Alvarez R; Alvarez JM; Humara JM; Revilla A; Ordás RJ Biotechnol Lett; 2009 Sep; 31(9):1477-83. PubMed ID: 19543858 [TBL] [Abstract][Full Text] [Related]
20. A comparative transcriptomic approach to understanding the formation of cork. Boher P; Soler M; Sánchez A; Hoede C; Noirot C; Paiva JAP; Serra O; Figueras M Plant Mol Biol; 2018 Jan; 96(1-2):103-118. PubMed ID: 29143299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]