These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24594577)

  • 21. Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering.
    Lima MJ; Pirraco RP; Sousa RA; Neves NM; Marques AP; Bhattacharya M; Correlo VM; Reis RL
    Biomed Microdevices; 2014 Feb; 16(1):69-78. PubMed ID: 24122322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells.
    Wang J; Ye R; Wei Y; Wang H; Xu X; Zhang F; Qu J; Zuo B; Zhang H
    J Biomed Mater Res A; 2012 Mar; 100(3):632-45. PubMed ID: 22213384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospinning approaches toward scaffold engineering--a brief overview.
    Boudriot U; Dersch R; Greiner A; Wendorff JH
    Artif Organs; 2006 Oct; 30(10):785-92. PubMed ID: 17026578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental therapies for repair of the central nervous system: stem cells and tissue engineering.
    Forraz N; Wright KE; Jurga M; McGuckin CP
    J Tissue Eng Regen Med; 2013 Jul; 7(7):523-36. PubMed ID: 22467493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.
    Zupanc GK; Sîrbulescu RF
    Eur J Neurosci; 2011 Sep; 34(6):917-29. PubMed ID: 21929625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration.
    Tabesh H; Amoabediny G; Nik NS; Heydari M; Yosefifard M; Siadat SO; Mottaghy K
    Neurochem Int; 2009 Feb; 54(2):73-83. PubMed ID: 19084565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system.
    Silva GA
    Surg Neurol; 2005 Apr; 63(4):301-6. PubMed ID: 15808703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural tissue engineering: strategies for repair and regeneration.
    Schmidt CE; Leach JB
    Annu Rev Biomed Eng; 2003; 5():293-347. PubMed ID: 14527315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The generation and differentiation of new neurons and the growth and regeneration of axons in the central nervous system of adult mammals.
    Kulinsky VI; Kolesnichenko LS
    Biochemistry (Mosc); 2000 Aug; 65(8):986-9. PubMed ID: 11002195
    [No Abstract]   [Full Text] [Related]  

  • 30. Neural stem cells from human cord blood on bioengineered surfaces--novel approach to multiparameter bio-tests.
    Buzanska L; Zychowicz M; Ruiz A; Ceriotti L; Coecke S; Rauscher H; Sobanski T; Whelan M; Domanska-Janik K; Colpo P; Rossi F
    Toxicology; 2010 Mar; 270(1):35-42. PubMed ID: 19539007
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for three-dimensional culture of central nervous system neurons.
    Puschmann TB; de Pablo Y; Zandén C; Liu J; Pekny M
    Tissue Eng Part C Methods; 2014 Jun; 20(6):485-92. PubMed ID: 24102451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural tissue engineering of the CNS using hydrogels.
    Nisbet DR; Crompton KE; Horne MK; Finkelstein DI; Forsythe JS
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):251-63. PubMed ID: 18161806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro and nanotechnological tools for study of RNA.
    Yoshizawa S
    Biochimie; 2012 Jul; 94(7):1588-94. PubMed ID: 22484393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural engineering to produce in vitro nerve constructs and neurointerface.
    Pfister BJ; Huang JH; Kameswaran N; Zager EL; Smith DH
    Neurosurgery; 2007 Jan; 60(1):137-41; discussion 141-2. PubMed ID: 17228262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanotubes in neural interfacing applications.
    Voge CM; Stegemann JP
    J Neural Eng; 2011 Feb; 8(1):011001. PubMed ID: 21245526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomaterials and strategies for nerve regeneration.
    Huang YC; Huang YY
    Artif Organs; 2006 Jul; 30(7):514-22. PubMed ID: 16836732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair.
    Ortega I; Ryan AJ; Deshpande P; MacNeil S; Claeyssens F
    Acta Biomater; 2013 Mar; 9(3):5511-20. PubMed ID: 23131386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen.
    Lanfer B; Hermann A; Kirsch M; Freudenberg U; Reuner U; Werner C; Storch A
    Tissue Eng Part A; 2010 Apr; 16(4):1103-13. PubMed ID: 19860550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.