These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24594610)

  • 1. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.
    Tan Q; Luo T; Xiong J; Kang H; Ji X; Zhang Y; Yang M; Wang X; Xue C; Liu J; Zhang W
    Sensors (Basel); 2014 Mar; 14(3):4154-66. PubMed ID: 24594610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology.
    Liang Y; Ma M; Zhang F; Liu F; Liu Z; Wang D; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wireless LC Sensor Coated with Ba0.9Bi0.066TiO3 for Measuring Temperature.
    Radovanovic M; Mojic-Lante B; Cvejin KN; Srdic VV; Stojanovic GM
    Sensors (Basel); 2015 May; 15(5):11454-64. PubMed ID: 25993519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
    Lin L; Ma M; Zhang F; Liu F; Liu Z; Li Y
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29370099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications.
    Varadharajan Idhaiam KS; Caswell JA; Pozo PD; Sabolsky K; Sierros KA; Reynolds DS; Sabolsky EM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlN-Based Ceramic Patch Antenna-Type Wireless Passive High-Temperature Sensor.
    Yan D; Yang Y; Hong Y; Liang T; Yao Z; Chen X; Xiong J
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive Wireless LC Proximity Sensor Based on LTCC Technology.
    Ma M; Wang Y; Liu F; Zhang F; Liu Z; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Passive Wireless Temperature Sensor for Harsh Environment Applications.
    Wang Y; Jia Y; Chen Q; Wang Y
    Sensors (Basel); 2008 Dec; 8(12):7982-7995. PubMed ID: 27873971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Passive Microwave Antenna-Integrated Temperature Sensor Based on CSRR.
    Kou H; Yang L; Zhang X; Shang Z; Shi J; Wang X
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
    Tan Q; Kang H; Xiong J; Qin L; Zhang W; Li C; Ding L; Zhang X; Yang M
    Sensors (Basel); 2013 Aug; 13(8):9896-908. PubMed ID: 23917261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase interrogation used for a wireless passive pressure sensor in an 800 °C high-temperature environment.
    Zhang H; Hong Y; Liang T; Zhang H; Tan Q; Xue C; Liu J; Zhang W; Xiong J
    Sensors (Basel); 2015 Jan; 15(2):2548-64. PubMed ID: 25690546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.
    Yan D; Yang Y; Hong Y; Liang T; Yao Z; Chen X; Xiong J
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless Microfluidic Sensor for Metal Ion Detection in Water.
    Liang Y; Ma M; Zhang F; Liu F; Lu T; Liu Z; Li Y
    ACS Omega; 2021 Apr; 6(13):9302-9309. PubMed ID: 33842799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor.
    Xiong J; Wu G; Tan Q; Wei T; Wu D; Shen S; Dong H; Zhang W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
    Tan Q; Guo Y; Zhang L; Lu F; Dong H; Xiong J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.
    Liu J; Yuan Y; Ren Z; Tan Q; Xiong J
    Sensors (Basel); 2015 Sep; 15(9):22660-71. PubMed ID: 26370999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Linearity Wireless Passive Temperature Sensor Based on Metamaterial Structure with Rotation-Insensitive Distance-Based Warning Ability.
    Wang C; Chen L; Tian B; Jiang Z
    Nanomaterials (Basel); 2023 Sep; 13(17):. PubMed ID: 37686990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.