These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 24594621)

  • 1. Large topological Hall effect in the non-collinear phase of an antiferromagnet.
    Sürgers C; Fischer G; Winkel P; Löhneysen HV
    Nat Commun; 2014 Mar; 5():3400. PubMed ID: 24594621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
    Owerre SA
    J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear Magnet Mn
    Liu ZH; Zhang YJ; Liu GD; Ding B; Liu EK; Jafri HM; Hou ZP; Wang WH; Ma XQ; Wu GH
    Sci Rep; 2017 Mar; 7(1):515. PubMed ID: 28364119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.
    Nakatsuji S; Kiyohara N; Higo T
    Nature; 2015 Nov; 527(7577):212-5. PubMed ID: 26524519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb
    Ghimire NJ; Botana AS; Jiang JS; Zhang J; Chen YS; Mitchell JF
    Nat Commun; 2018 Aug; 9(1):3280. PubMed ID: 30115927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergent Topological Hall Effect from Exchange Coupling in Ferromagnetic Cr
    Jeon JH; Na HR; Kim H; Lee S; Song S; Kim J; Park S; Kim J; Noh H; Kim G; Jerng SK; Chun SH
    ACS Nano; 2022 Jun; 16(6):8974-8982. PubMed ID: 35621270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological magnon bands and unconventional thermal Hall effect on the frustrated honeycomb and bilayer triangular lattice.
    Owerre SA
    J Phys Condens Matter; 2017 Sep; 29(38):385801. PubMed ID: 28678021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe(3)Sn(2).
    Fenner LA; Dee AA; Wills AS
    J Phys Condens Matter; 2009 Nov; 21(45):452202. PubMed ID: 21694002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching of a large anomalous Hall effect between metamagnetic phases of a non-collinear antiferromagnet.
    Sürgers C; Wolf T; Adelmann P; Kittler W; Fischer G; Löhneysen HV
    Sci Rep; 2017 Feb; 7():42982. PubMed ID: 28218287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Displacements Enabling the Observation of the Anomalous Hall Effect in a Non-Collinear Antiferromagnet.
    Rimmler BH; Hazra BK; Pal B; Mohseni K; Taylor JM; Bedoya-Pinto A; Deniz H; Tangi M; Kostanovskiy I; Luo C; Neumann RR; Ernst A; Radu F; Mertig I; Meyerheim HL; Parkin SSP
    Adv Mater; 2023 Jun; 35(23):e2209616. PubMed ID: 36996804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Hall Effect of Magnons in Collinear Antiferromagnetic Insulators: Signatures of Magnetic and Topological Phase Transitions.
    Neumann RR; Mook A; Henk J; Mertig I
    Phys Rev Lett; 2022 Mar; 128(11):117201. PubMed ID: 35363030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-electrical switching of a topological non-collinear antiferromagnet at room temperature.
    Deng Y; Liu X; Chen Y; Du Z; Jiang N; Shen C; Zhang E; Zheng H; Lu HZ; Wang K
    Natl Sci Rev; 2023 Feb; 10(2):nwac154. PubMed ID: 36872930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the antiferromagnetic spin Hall effect.
    Chen X; Shi S; Shi G; Fan X; Song C; Zhou X; Bai H; Liao L; Zhou Y; Zhang H; Li A; Chen Y; Han X; Jiang S; Zhu Z; Wu H; Wang X; Xue D; Yang H; Pan F
    Nat Mater; 2021 Jun; 20(6):800-804. PubMed ID: 33633354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological Spin Textures in a Non-Collinear Antiferromagnet System.
    Liu X; Feng Q; Zhang D; Deng Y; Dong S; Zhang E; Li W; Lu Q; Chang K; Wang K
    Adv Mater; 2023 Jun; 35(26):e2211634. PubMed ID: 36951756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet.
    Kurumaji T; Nakajima T; Hirschberger M; Kikkawa A; Yamasaki Y; Sagayama H; Nakao H; Taguchi Y; Arima TH; Tokura Y
    Science; 2019 Aug; 365(6456):914-918. PubMed ID: 31395744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-linear spin wave theory results for the frustrated [Formula: see text] Heisenberg antiferromagnet on a body-centered cubic lattice.
    Majumdar K; Datta T
    J Phys Condens Matter; 2009 Oct; 21(40):406004. PubMed ID: 21832429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiferromagnetic Chern Insulators in Noncentrosymmetric Systems.
    Jiang K; Zhou S; Dai X; Wang Z
    Phys Rev Lett; 2018 Apr; 120(15):157205. PubMed ID: 29756861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet.
    Kimata M; Chen H; Kondou K; Sugimoto S; Muduli PK; Ikhlas M; Omori Y; Tomita T; MacDonald AH; Nakatsuji S; Otani Y
    Nature; 2019 Jan; 565(7741):627-630. PubMed ID: 30651643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation and annihilation of skyrmions in Mn
    Ludbrook BM; Dubuis G; Puichaud AH; Ruck BJ; Granville S
    Sci Rep; 2017 Oct; 7(1):13620. PubMed ID: 29051573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of non-collinear spin states with scanning tunneling microscopy.
    Wulfhekel W; Gao CL
    J Phys Condens Matter; 2010 Mar; 22(8):084021. PubMed ID: 21389397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.