These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24594761)

  • 21. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of dirac electrons in rotated graphene bilayers.
    Trambly de Laissardière G; Mayou D; Magaud L
    Nano Lett; 2010 Mar; 10(3):804-8. PubMed ID: 20121163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging universal conductance fluctuations in graphene.
    Borunda MF; Berezovsky J; Westervelt RM; Heller EJ
    ACS Nano; 2011 May; 5(5):3622-7. PubMed ID: 21466198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scattering by linear defects in graphene: a tight-binding approach.
    Rodrigues JN; Peres NM; Lopes dos Santos JM
    J Phys Condens Matter; 2013 Feb; 25(7):075303. PubMed ID: 23341433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.
    Ferro Y; Fernandez N; Allouche A; Linsmeier C
    J Phys Condens Matter; 2013 Jan; 25(1):015002. PubMed ID: 23170758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A bipolar spin-filtering effect in graphene zigzag nanoribbons with spin-orbit coupling.
    Liu JF; Chan KS; Wang J
    Nanotechnology; 2012 Mar; 23(9):095201. PubMed ID: 22322097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductance and shot noise in strained bilayer graphene.
    Pearce AJ; Cavaliere F; Mariani E
    J Phys Condens Matter; 2013 Sep; 25(37):375301. PubMed ID: 23963478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bandgap opening in graphene antidot lattices: the missing half.
    Ouyang F; Peng S; Liu Z; Liu Z
    ACS Nano; 2011 May; 5(5):4023-30. PubMed ID: 21513306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition.
    Lherbier A; Dubois SM; Declerck X; Roche S; Niquet YM; Charlier JC
    Phys Rev Lett; 2011 Jan; 106(4):046803. PubMed ID: 21405346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ballistic transport through graphene nanostructures of velocity and potential barriers.
    Krstajić PM; Vasilopoulos P
    J Phys Condens Matter; 2011 Apr; 23(13):135302. PubMed ID: 21403236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic mechanism of 1/f noise in graphene: role of energy band dispersion.
    Pal AN; Ghatak S; Kochat V; Sneha ES; Sampathkumar A; Raghavan S; Ghosh A
    ACS Nano; 2011 Mar; 5(3):2075-81. PubMed ID: 21332148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M; Sabeeh K
    J Phys Condens Matter; 2012 Apr; 24(13):135005. PubMed ID: 22392807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic properties of a graphene antidot in magnetic fields.
    Park PS; Kim SC; Yang SR
    J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomistic simulation and the mechanism of graphene amorphization under electron irradiation.
    Liang Z; Xu Z; Yan T; Ding F
    Nanoscale; 2014 Feb; 6(4):2082-6. PubMed ID: 24389776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disorder and electronic transport in graphene.
    Mucciolo ER; Lewenkopf CH
    J Phys Condens Matter; 2010 Jul; 22(27):273201. PubMed ID: 21399249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Band gap opening in methane intercalated graphene.
    Hargrove J; Shashikala HB; Guerrido L; Ravi N; Wang XQ
    Nanoscale; 2012 Aug; 4(15):4443-6. PubMed ID: 22695708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal transport in functionalized graphene.
    Kim JY; Lee JH; Grossman JC
    ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.