These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24594761)

  • 61. Hot electron injection from graphene quantum dots to TiO₂.
    Williams KJ; Nelson CA; Yan X; Li LS; Zhu X
    ACS Nano; 2013 Feb; 7(2):1388-94. PubMed ID: 23347000
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Engineering the electronic structure of graphene.
    Zhan D; Yan J; Lai L; Ni Z; Liu L; Shen Z
    Adv Mater; 2012 Aug; 24(30):4055-69. PubMed ID: 22760840
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A model for ballistic transport across locally gated graphene bipolar junctions.
    Nguyen NT; To DQ; Nguyen VL
    J Phys Condens Matter; 2014 Jan; 26(1):015301. PubMed ID: 24275156
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Equations-of-motion method for triplet excitation operators in graphene.
    Jafari SA; Baskaran G
    J Phys Condens Matter; 2012 Mar; 24(9):095601. PubMed ID: 22317782
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phase separation in a lattice model of a superconductor with pair hopping.
    Kapcia K; Robaszkiewicz S; Micnas R
    J Phys Condens Matter; 2012 May; 24(21):215601. PubMed ID: 22543513
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.
    Han SJ; Reddy D; Carpenter GD; Franklin AD; Jenkins KA
    ACS Nano; 2012 Jun; 6(6):5220-6. PubMed ID: 22582702
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spin current in an electron waveguide tunnel-coupled to a topological insulator.
    Sukhanov AA; Sablikov VA
    J Phys Condens Matter; 2012 Oct; 24(40):405301. PubMed ID: 22968932
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electron recombination in ionized liquid argon: a computational approach based on realistic models of electron transport and reactions.
    Jaskolski M; Wojcik M
    J Phys Chem A; 2011 May; 115(17):4317-25. PubMed ID: 21473614
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 70. How close can one approach the Dirac point in graphene experimentally?
    Mayorov AS; Elias DC; Mukhin IS; Morozov SV; Ponomarenko LA; Novoselov KS; Geim AK; Gorbachev RV
    Nano Lett; 2012 Sep; 12(9):4629-34. PubMed ID: 22935053
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electronic transport and Raman scattering in size-controlled nanoperforated graphene.
    Kim M; Safron NS; Han E; Arnold MS; Gopalan P
    ACS Nano; 2012 Nov; 6(11):9846-54. PubMed ID: 23113838
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions.
    Yang SL; Sobota JA; Howard CA; Pickard CJ; Hashimoto M; Lu DH; Mo SK; Kirchmann PS; Shen ZX
    Nat Commun; 2014 Mar; 5():3493. PubMed ID: 24651261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrochemistry of folded graphene edges.
    Ambrosi A; Bonanni A; Pumera M
    Nanoscale; 2011 May; 3(5):2256-60. PubMed ID: 21483940
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solvothermal reduction of chemically exfoliated graphene sheets.
    Wang H; Robinson JT; Li X; Dai H
    J Am Chem Soc; 2009 Jul; 131(29):9910-1. PubMed ID: 19580268
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pseudopotential-based studies of electron transport in graphene and graphene nanoribbons.
    Fischetti MV; Kim J; Narayanan S; Ong ZY; Sachs C; Ferry DK; Aboud SJ
    J Phys Condens Matter; 2013 Nov; 25(47):473202. PubMed ID: 24135050
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory.
    Smallwood CJ; Larsen RE; Glover WJ; Schwartz BJ
    J Chem Phys; 2006 Aug; 125(7):074102. PubMed ID: 16942317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Automated effective band structures for defective and mismatched supercells.
    Brommer P; Quigley D
    J Phys Condens Matter; 2014 Dec; 26(48):485501. PubMed ID: 25388668
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pseudopotential generation.
    Cao YG; Jiao ZK; Feng SS
    J Zhejiang Univ Sci; 2003; 4(2):207-13. PubMed ID: 12659236
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Weak localization in bilayer graphene.
    Gorbachev RV; Tikhonenko FV; Mayorov AS; Horsell DW; Savchenko AK
    Phys Rev Lett; 2007 Apr; 98(17):176805. PubMed ID: 17501523
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Graphene-metal interface: two-terminal resistance of low-mobility graphene in high magnetic fields.
    Krstić V; Obergfell D; Hansel S; Rikken GL; Blokland JH; Ferreira MS; Roth S
    Nano Lett; 2008 Jun; 8(6):1700-3. PubMed ID: 18494531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.