BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24594783)

  • 1. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.
    Schmer MR; Vogel KP; Varvel GE; Follett RF; Mitchell RB; Jin VL
    PLoS One; 2014; 9(3):e89501. PubMed ID: 24594783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Net energy of cellulosic ethanol from switchgrass.
    Schmer MR; Vogel KP; Mitchell RB; Perrin RK
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change.
    Searchinger T; Heimlich R; Houghton RA; Dong F; Elobeid A; Fabiosa J; Tokgoz S; Hayes D; Yu TH
    Science; 2008 Feb; 319(5867):1238-40. PubMed ID: 18258860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands.
    Jin VL; Schmer MR; Stewart CE; Mitchell RB; Williams CO; Wienhold BJ; Varvel GE; Follett RF; Kimble J; Vogel KP
    Sci Adv; 2019 Dec; 5(12):eaav9318. PubMed ID: 31897423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost of abating greenhouse gas emissions with cellulosic ethanol.
    Dwivedi P; Wang W; Hudiburg T; Jaiswal D; Parton W; Long S; DeLucia E; Khanna M
    Environ Sci Technol; 2015 Feb; 49(4):2512-22. PubMed ID: 25588032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.
    Femeena PV; Sudheer KP; Cibin R; Chaubey I
    J Environ Manage; 2018 Apr; 212():198-209. PubMed ID: 29432999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.
    Duval BD; Anderson-Teixeira KJ; Davis SC; Keogh C; Long SP; Parton WJ; DeLucia EH
    PLoS One; 2013; 8(8):e72019. PubMed ID: 23991028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated Biomass Sorghum GHG Reduction Potential is Similar to Maize.
    Kent J; Hartman MD; Lee DK; Hudiburg T
    Environ Sci Technol; 2020 Oct; 54(19):12456-12466. PubMed ID: 32856896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Renewable Fuel Standard May Limit Overall Greenhouse Gas Savings by Corn Stover-Based Cellulosic Biofuels in the U.S. Midwest: Effects of the Regulatory Approach on Projected Emissions.
    Kim S; Dale BE; Zhang X; Jones CD; Reddy AD; Izaurralde RC
    Environ Sci Technol; 2019 Mar; 53(5):2288-2294. PubMed ID: 30730719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Biofuel Crop Switchgrass (
    Bai J; Luo L; Li A; Lai X; Zhang X; Yu Y; Wang H; Wu N; Zhang L
    Life (Basel); 2022 Dec; 12(12):. PubMed ID: 36556470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.
    Adler PR; Mitchell JG; Pourhashem G; Spatari S; Del Grosso SJ; Parton WJ
    Ecol Appl; 2015 Jun; 25(4):1142-56. PubMed ID: 26465048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.
    Gallagher ME; Hockaday WC; Masiello CA; Snapp S; McSwiney CP; Baldock JA
    Environ Sci Technol; 2011 Mar; 45(5):2013-20. PubMed ID: 21348531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas mitigation potential of balanced fertilization cropland under double-cropping systems: a case study in Shaanxi province, China.
    Li C; Li C; Han J; Zhang J; Wang Y; Yang F; Wen X; Liao Y
    Environ Monit Assess; 2019 Jan; 191(2):90. PubMed ID: 30666420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Negative Biofuel Production.
    Kim S; Zhang X; Reddy AD; Dale BE; Thelen KD; Jones CD; Izaurralde RC; Runge T; Maravelias C
    Environ Sci Technol; 2020 Sep; 54(17):10797-10807. PubMed ID: 32786588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the impacts of landscape positions and nitrogen fertilizer rates on dissolved organic carbon on switchgrass land seeded on marginally yielding cropland.
    Lai L; Kumar S; Mbonimpa EG; Hong CO; Owens VN; Neupane RP
    J Environ Manage; 2016 Apr; 171():113-120. PubMed ID: 26861225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.
    Pawlowski MN; Crow SE; Meki MN; Kiniry JR; Taylor AD; Ogoshi R; Youkhana A; Nakahata M
    PLoS One; 2017; 12(1):e0168510. PubMed ID: 28052075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.