These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24594808)

  • 1. Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways.
    Hsiao YY; Fang WH; Lee CC; Chen YP; Yuan HS
    PLoS Biol; 2014 Mar; 12(3):e1001803. PubMed ID: 24594808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
    Hsiao YY; Duh Y; Chen YP; Wang YT; Yuan HS
    Nucleic Acids Res; 2012 Sep; 40(16):8144-54. PubMed ID: 22718982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulge, bubble, and Y: how an RNA exonuclease repairs DNA, in detail.
    Robinson R
    PLoS Biol; 2014 Mar; 12(3):e1001804. PubMed ID: 24594878
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation.
    Hsiao YY; Yang CC; Lin CL; Lin JL; Duh Y; Yuan HS
    Nat Chem Biol; 2011 Apr; 7(4):236-43. PubMed ID: 21317904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic residues in RNase T stack with nucleobases to guide the sequence-specific recognition and cleavage of nucleic acids.
    Duh Y; Hsiao YY; Li CL; Huang JC; Yuan HS
    Protein Sci; 2015 Dec; 24(12):1934-41. PubMed ID: 26362012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into RNA unwinding and degradation by RNase R.
    Chu LY; Hsieh TJ; Golzarroshan B; Chen YP; Agrawal S; Yuan HS
    Nucleic Acids Res; 2017 Nov; 45(20):12015-12024. PubMed ID: 29036353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exonuclease X of Escherichia coli. A novel 3'-5' DNase and Dnaq superfamily member involved in DNA repair.
    Viswanathan M; Lovett ST
    J Biol Chem; 1999 Oct; 274(42):30094-100. PubMed ID: 10514496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli.
    Viswanathan M; Lanjuin A; Lovett ST
    Genetics; 1999 Mar; 151(3):929-34. PubMed ID: 10049912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a potent DNase activity associated with RNase T of Escherichia coli.
    Viswanathan M; Dower KW; Lovett ST
    J Biol Chem; 1998 Dec; 273(52):35126-31. PubMed ID: 9857048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate recognition and catalysis by the exoribonuclease RNase R.
    Vincent HA; Deutscher MP
    J Biol Chem; 2006 Oct; 281(40):29769-75. PubMed ID: 16893880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining tRNA 3'-ends in
    Wellner K; Czech A; Ignatova Z; Betat H; Mörl M
    RNA; 2018 Mar; 24(3):361-370. PubMed ID: 29180590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3' ends.
    Xiao MS; Wilusz JE
    Nucleic Acids Res; 2019 Sep; 47(16):8755-8769. PubMed ID: 31269210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for processivity and single-strand specificity of RNase II.
    Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A
    Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the duplex DNA processing of TREX2.
    Cheng HL; Lin CT; Huang KW; Wang S; Lin YT; Toh SI; Hsiao YY
    Nucleic Acids Res; 2018 Dec; 46(22):12166-12176. PubMed ID: 30357414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB.
    Manthei KA; Munson LM; Nandakumar J; Simmons LA
    Nucleic Acids Res; 2024 Jun; 52(11):6347-6359. PubMed ID: 38661211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into mechanisms of 3'-5' exonuclease activity and removal of bulky 8,5'-cyclopurine adducts by apurinic/apyrimidinic endonucleases.
    Mazouzi A; Vigouroux A; Aikeshev B; Brooks PJ; Saparbaev MK; Morera S; Ishchenko AA
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):E3071-80. PubMed ID: 23898172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover.
    Zuo Y; Zheng H; Wang Y; Chruszcz M; Cymborowski M; Skarina T; Savchenko A; Malhotra A; Minor W
    Structure; 2007 Apr; 15(4):417-28. PubMed ID: 17437714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
    Zuo Y; Deutscher MP
    J Biol Chem; 2002 Dec; 277(51):50155-9. PubMed ID: 12364334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.
    Tsutakawa SE; Lafrance-Vanasse J; Tainer JA
    DNA Repair (Amst); 2014 Jul; 19():95-107. PubMed ID: 24754999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.