These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24594876)

  • 1. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching.
    Rieger J; Isacsson A; Seitner MJ; Kotthaus JP; Weig EM
    Nat Commun; 2014 Mar; 5():3345. PubMed ID: 24594876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging material properties of biological samples with a force feedback microscope.
    Costa L; Rodrigues MS; Newman E; Zubieta C; Chevrier J; Comin F
    J Mol Recognit; 2013 Dec; 26(12):689-93. PubMed ID: 24277614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges.
    Takamura M; Okamoto H; Furukawa K; Yamaguchi H; Hibino H
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Dissipation Pathways in Few-Layer MoS
    Matis BR; Houston BH; Baldwin JW
    Sci Rep; 2017 Jul; 7(1):5656. PubMed ID: 28720850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution.
    Tsaturyan Y; Barg A; Polzik ES; Schliesser A
    Nat Nanotechnol; 2017 Aug; 12(8):776-783. PubMed ID: 28604707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.
    Hamoumi M; Allain PE; Hease W; Gil-Santos E; Morgenroth L; Gérard B; Lemaître A; Leo G; Favero I
    Phys Rev Lett; 2018 Jun; 120(22):223601. PubMed ID: 29906180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Quality Factors in Superlattice Ferroelectric Hf
    Zheng XQ; Tharpe T; Enamul Hoque Yousuf SM; Rudawski NG; Feng PX; Tabrizian R
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36807-36814. PubMed ID: 35920004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature.
    Faust T; Krenn P; Manus S; Kotthaus JP; Weig EM
    Nat Commun; 2012 Mar; 3():728. PubMed ID: 22395619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance-mode effect on microcantilever mass-sensing performance in air.
    Xia X; Li X
    Rev Sci Instrum; 2008 Jul; 79(7):074301. PubMed ID: 18681721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A local optical probe for measuring motion and stress in a nanoelectromechanical system.
    Reserbat-Plantey A; Marty L; Arcizet O; Bendiab N; Bouchiat V
    Nat Nanotechnol; 2012 Jan; 7(3):151-5. PubMed ID: 22266635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of distance-dependent damping in tapping-mode atomic force microscopy force measurements in liquid.
    Nnebe I; Schneider JW
    Langmuir; 2004 Apr; 20(8):3195-201. PubMed ID: 15875848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems.
    Qian Z; Liu F; Hui Y; Kar S; Rinaldi M
    Nano Lett; 2015 Jul; 15(7):4599-604. PubMed ID: 26029960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of Surface Loss as Ubiquitous Limiting Damping Mechanism in SiN Micro- and Nanomechanical Resonators.
    Villanueva LG; Schmid S
    Phys Rev Lett; 2014 Nov; 113(22):227201. PubMed ID: 25494083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective dynamics of strain-coupled nanomechanical pillar resonators.
    Doster J; Hoenl S; Lorenz H; Paulitschke P; Weig EM
    Nat Commun; 2019 Nov; 10(1):5246. PubMed ID: 31748570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong internal resonance in a nonlinear, asymmetric microbeam resonator.
    Asadi K; Yeom J; Cho H
    Microsyst Nanoeng; 2021; 7():9. PubMed ID: 34567726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous dissipation in single-walled carbon nanotube resonators.
    Greaney PA; Lani G; Cicero G; Grossman JC
    Nano Lett; 2009 Nov; 9(11):3699-703. PubMed ID: 19863081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new model for investigating the flexural vibration of an atomic force microscope cantilever.
    Abbasi M; Karami Mohammadi A
    Ultramicroscopy; 2010 Oct; 110(11):1374-9. PubMed ID: 20702041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy dissipation in microfluidic beam resonators: effect of Poisson's ratio.
    Sader JE; Burg TP; Lee J; Manalis SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026304. PubMed ID: 21929087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.