These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24594876)

  • 21. Shielded cantilever with on-chip interferometer circuit for THz scanning probe impedance microscopy.
    Finkel M; Thierschmann H; Katan AJ; Westig MP; Spirito M; Klapwijk TM
    Rev Sci Instrum; 2019 Nov; 90(11):113701. PubMed ID: 31779413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Ultramicroscopy; 2011 Feb; 111(3):186-90. PubMed ID: 21333855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.
    Klocke M; Wolf DE
    Beilstein J Nanotechnol; 2016; 7():708-20. PubMed ID: 27335760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of Intrinsic Dissipation Due to Thermoelastic Coupling in Gyroscope Resonators.
    Li C; Gao S; Niu S; Liu H
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical model and experimental study on environmental dissipation mechanism of tapping mode atomic force microscope.
    Wei Z; Liu J; Wei R; Peng A
    J Microsc; 2021 Sep; 283(3):219-231. PubMed ID: 34028831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissipation signals due to lateral tip oscillations in FM-AFM.
    Klocke M; Wolf DE
    Beilstein J Nanotechnol; 2014; 5():2048-57. PubMed ID: 25551032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Misfit strain-induced energy dissipation for graphene/MoS
    He JD; Jiang JW
    Nanotechnology; 2019 Jun; 30(26):265701. PubMed ID: 30865944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of quartz resonator Q and other figures of merit by an energy sink method.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1386-98. PubMed ID: 17718328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling and Observation of Nonlinear Damping in Dissipation-Diluted Nanomechanical Resonators.
    Catalini L; Rossi M; Langman EC; Schliesser A
    Phys Rev Lett; 2021 Apr; 126(17):174101. PubMed ID: 33988425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.
    Eichler A; Moser J; Chaste J; Zdrojek M; Wilson-Rae I; Bachtold A
    Nat Nanotechnol; 2011 May; 6(6):339-42. PubMed ID: 21572430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloid probes with increased tip height for higher sensitivity in friction force microscopy and less cantilever damping in dynamic force microscopy.
    Schmutz JE; Schäfer MM; Hölscher H
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026103. PubMed ID: 18315335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced tip design for liquid phase vibration mode atomic force microscopy.
    Muramatsu H; Yamamoto Y; Shigeno M; Shirakawabe Y; Inoue A; Kim WS; Kim SJ; Chang SM; Kim JM
    Anal Chim Acta; 2008 Mar; 611(2):233-8. PubMed ID: 18328326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-Dependent Nonlinear Damping in Palladium Nanomechanical Resonators.
    Kumar S; Rebari S; Pal SP; Yadav SS; Kumar A; Aggarwal A; Indrajeet S; Venkatesan A
    Nano Lett; 2021 Apr; 21(7):2975-2981. PubMed ID: 33755479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy-dependent path of dissipation in nanomechanical resonators.
    Güttinger J; Noury A; Weber P; Eriksson AM; Lagoin C; Moser J; Eichler C; Wallraff A; Isacsson A; Bachtold A
    Nat Nanotechnol; 2017 Jul; 12(7):631-636. PubMed ID: 28507334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force.
    Stachiv I; Fang TH; Jeng YR
    Sensors (Basel); 2015 Aug; 15(8):19351-68. PubMed ID: 26287190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic corrections to contact resonance atomic force microscopy measurements of viscoelastic loss tangent.
    Tung RC; Killgore JP; Hurley DC
    Rev Sci Instrum; 2013 Jul; 84(7):073703. PubMed ID: 23902072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Detection of Akhiezer Damping in a Silicon MEMS Resonator.
    Rodriguez J; Chandorkar SA; Watson CA; Glaze GM; Ahn CH; Ng EJ; Yang Y; Kenny TW
    Sci Rep; 2019 Feb; 9(1):2244. PubMed ID: 30783192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.