These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24595075)
1. High-frequency acoustic charge transport in GaAs nanowires. Büyükköse S; Hernández-Mínguez A; Vratzov B; Somaschini C; Geelhaar L; Riechert H; van der Wiel WG; Santos PV Nanotechnology; 2014 Apr; 25(13):135204. PubMed ID: 24595075 [TBL] [Abstract][Full Text] [Related]
2. Polarized recombination of acoustically transported carriers in GaAs nanowires. Möller M; Hernández-Mínguez A; Breuer S; Pfüller C; Brandt O; de Lima MM; Cantarero A; Geelhaar L; Riechert H; Santos PV Nanoscale Res Lett; 2012 May; 7(1):247. PubMed ID: 22583747 [TBL] [Abstract][Full Text] [Related]
3. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. Shilton JM; Talyanskii VI; Pepper M; Ritchie DA; Frost JE; Ford CJ; Smith CG; Jones GA J Phys Condens Matter; 1996 Sep; 8(38):L531-9. PubMed ID: 22146295 [TBL] [Abstract][Full Text] [Related]
4. Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires. Sonner MM; Gnedel M; Berlin JC; Rudolph D; Koblmüller G; Krenner HJ Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34584026 [TBL] [Abstract][Full Text] [Related]
5. Acoustic charge transport in GaN nanowires. Ebbecke J; Maisch S; Wixforth A; Calarco R; Meijers R; Marso M; Lüth H Nanotechnology; 2008 Jul; 19(27):275708. PubMed ID: 21828720 [TBL] [Abstract][Full Text] [Related]
6. Controllable p-n switching behaviors of GaAs nanowires via an interface effect. Han N; Wang F; Hou JJ; Xiu F; Yip S; Hui AT; Hung T; Ho JC ACS Nano; 2012 May; 6(5):4428-33. PubMed ID: 22519669 [TBL] [Abstract][Full Text] [Related]
7. Charge transport in GaAs nanowires: interplay between conductivity through the interior and surface conductivity. Korte S; Nägelein A; Steidl M; Prost W; Cherepanov V; Kleinschmidt P; Hannappel T; Voigtländer B J Phys Condens Matter; 2019 Feb; 31(7):074004. PubMed ID: 30524116 [TBL] [Abstract][Full Text] [Related]
8. Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells. Sonner MM; Sitek A; Janker L; Rudolph D; Ruhstorfer D; Döblinger M; Manolescu A; Abstreiter G; Finley JJ; Wixforth A; Koblmüller G; Krenner HJ Nano Lett; 2019 May; 19(5):3336-3343. PubMed ID: 31013103 [TBL] [Abstract][Full Text] [Related]
9. Real-Time Electron and Hole Transport Dynamics in Halide Perovskite Nanowires. Janker L; Tong Y; Polavarapu L; Feldmann J; Urban AS; Krenner HJ Nano Lett; 2019 Dec; 19(12):8701-8707. PubMed ID: 31663745 [TBL] [Abstract][Full Text] [Related]
10. Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. Sogawa T; Santos PV; Zhang SK; Eshlaghi S; Wieck AD; Ploog KH Phys Rev Lett; 2001 Dec; 87(27 Pt 1):276601. PubMed ID: 11800904 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves. Dong B; Afanasev A; Johnson R; Zaghloul M Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344596 [TBL] [Abstract][Full Text] [Related]
12. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617 [TBL] [Abstract][Full Text] [Related]
19. Quantum-confined nanowires as vehicles for enhanced electrical transport. Mohammad SN Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637 [TBL] [Abstract][Full Text] [Related]
20. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires. Lee S; Lee W; Seo K; Kim J; Han SH; Kim B Nanotechnology; 2008 Oct; 19(41):415202. PubMed ID: 21832639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]