These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24595075)

  • 1. High-frequency acoustic charge transport in GaAs nanowires.
    Büyükköse S; Hernández-Mínguez A; Vratzov B; Somaschini C; Geelhaar L; Riechert H; van der Wiel WG; Santos PV
    Nanotechnology; 2014 Apr; 25(13):135204. PubMed ID: 24595075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarized recombination of acoustically transported carriers in GaAs nanowires.
    Möller M; Hernández-Mínguez A; Breuer S; Pfüller C; Brandt O; de Lima MM; Cantarero A; Geelhaar L; Riechert H; Santos PV
    Nanoscale Res Lett; 2012 May; 7(1):247. PubMed ID: 22583747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves.
    Shilton JM; Talyanskii VI; Pepper M; Ritchie DA; Frost JE; Ford CJ; Smith CG; Jones GA
    J Phys Condens Matter; 1996 Sep; 8(38):L531-9. PubMed ID: 22146295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-nanosecond acousto-electric carrier redistribution dynamics and transport in polytypic GaAs nanowires.
    Sonner MM; Gnedel M; Berlin JC; Rudolph D; Koblmüller G; Krenner HJ
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34584026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic charge transport in GaN nanowires.
    Ebbecke J; Maisch S; Wixforth A; Calarco R; Meijers R; Marso M; Lüth H
    Nanotechnology; 2008 Jul; 19(27):275708. PubMed ID: 21828720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable p-n switching behaviors of GaAs nanowires via an interface effect.
    Han N; Wang F; Hou JJ; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 May; 6(5):4428-33. PubMed ID: 22519669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge transport in GaAs nanowires: interplay between conductivity through the interior and surface conductivity.
    Korte S; Nägelein A; Steidl M; Prost W; Cherepanov V; Kleinschmidt P; Hannappel T; Voigtländer B
    J Phys Condens Matter; 2019 Feb; 31(7):074004. PubMed ID: 30524116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of Corner States and Carrier Localization by Monolayer Fluctuations in Radial Nanowire Quantum Wells.
    Sonner MM; Sitek A; Janker L; Rudolph D; Ruhstorfer D; Döblinger M; Manolescu A; Abstreiter G; Finley JJ; Wixforth A; Koblmüller G; Krenner HJ
    Nano Lett; 2019 May; 19(5):3336-3343. PubMed ID: 31013103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Electron and Hole Transport Dynamics in Halide Perovskite Nanowires.
    Janker L; Tong Y; Polavarapu L; Feldmann J; Urban AS; Krenner HJ
    Nano Lett; 2019 Dec; 19(12):8701-8707. PubMed ID: 31663745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves.
    Sogawa T; Santos PV; Zhang SK; Eshlaghi S; Wieck AD; Ploog KH
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):276601. PubMed ID: 11800904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Photoemission on p-Type GaAs Using Surface Acoustic Waves.
    Dong B; Afanasev A; Johnson R; Zaghloul M
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures.
    Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ
    Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires.
    Zhang W; Yang F; Messing ME; Mergenthaler K; Pistol ME; Deppert K; Samuelson L; Magnusson MH; Yartsev A
    Nanotechnology; 2016 Nov; 27(45):455704. PubMed ID: 27713183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct photocurrent response of individual GaAs nanowires induced by n-type doping.
    Xia H; Lu ZY; Li TX; Parkinson P; Liao ZM; Liu FH; Lu W; Hu WD; Chen PP; Xu HY; Zou J; Jagadish C
    ACS Nano; 2012 Jul; 6(7):6005-13. PubMed ID: 22724925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires.
    Su X; Zeng X; Němec H; Zou X; Zhang W; Borgström MT; Yartsev A
    Nanoscale; 2019 Oct; 11(40):18550-18558. PubMed ID: 31363719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-colour heterojunction unipolar nanowire light-emitting diode by tunnel injection.
    Zimmler MA; Bao J; Shalish I; Yi W; Narayanamurti V; Capasso F
    Nanotechnology; 2007 Oct; 18(39):395201. PubMed ID: 21730412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures.
    Kondratenko SV; Iliash SA; Mazur YI; Kunets VP; Benamara M; Salamo GJ
    Nanotechnology; 2017 Sep; 28(37):375201. PubMed ID: 28714860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range and high-speed electronic spin-transport at a GaAs/AlGaAs semiconductor interface.
    Nádvorník L; Němec P; Janda T; Olejník K; Novák V; Skoromets V; Němec H; Kužel P; Trojánek F; Jungwirth T; Wunderlich J
    Sci Rep; 2016 Mar; 6():22901. PubMed ID: 26980667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires.
    Lee S; Lee W; Seo K; Kim J; Han SH; Kim B
    Nanotechnology; 2008 Oct; 19(41):415202. PubMed ID: 21832639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.