These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24595354)

  • 21. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.
    Gao D; Zhan CG
    Proteins; 2006 Jan; 62(1):99-110. PubMed ID: 16288482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction pathway and free-energy barrier for reactivation of dimethylphosphoryl-inhibited human acetylcholinesterase.
    Liu J; Zhang Y; Zhan CG
    J Phys Chem B; 2009 Dec; 113(50):16226-36. PubMed ID: 19924840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why does the G117H mutation considerably improve the activity of human butyrylcholinesterase against sarin? Insights from quantum mechanical/molecular mechanical free energy calculations.
    Yao Y; Liu J; Zhan CG
    Biochemistry; 2012 Nov; 51(44):8980-92. PubMed ID: 23092211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the catalysis of anti-cocaine catalytic antibody: competing reaction pathways and free energy barriers.
    Pan Y; Gao D; Zhan CG
    J Am Chem Soc; 2008 Apr; 130(15):5140-9. PubMed ID: 18341277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction mechanism for cocaine esterase-catalyzed hydrolyses of (+)- and (-)-cocaine: unexpected common rate-determining step.
    Liu J; Zhao X; Yang W; Zhan CG
    J Phys Chem B; 2011 May; 115(17):5017-25. PubMed ID: 21486046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational determination of fundamental pathway and activation barriers for acetohydroxyacid synthase-catalyzed condensation reactions of alpha-keto acids.
    Xiong Y; Liu J; Yang GF; Zhan CG
    J Comput Chem; 2010 Jun; 31(8):1592-602. PubMed ID: 19554557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free energy perturbation (FEP) simulation on the transition states of cocaine hydrolysis catalyzed by human butyrylcholinesterase and its mutants.
    Pan Y; Gao D; Yang W; Cho H; Zhan CG
    J Am Chem Soc; 2007 Nov; 129(44):13537-43. PubMed ID: 17927177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman.
    Gordon RK; Haigh JR; Garcia GE; Feaster SR; Riel MA; Lenz DE; Aisen PS; Doctor BP
    Chem Biol Interact; 2005 Dec; 157-158():239-46. PubMed ID: 16256090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction profiles of the interaction between sarin and acetylcholinesterase and the S203C mutant: model nucleophiles and QM/MM potential energy surfaces.
    Beck JM; Hadad CM
    Chem Biol Interact; 2010 Sep; 187(1-3):220-4. PubMed ID: 20156428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure.
    Nigg HN; Knaak JB
    Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steady-state kinetic analysis of human cholinesterases over wide concentration ranges of competing substrates.
    Mukhametgalieva AR; Lushchekina SV; Aglyamova AR; Masson P
    Biochim Biophys Acta Proteins Proteom; 2022 Jan; 1870(1):140733. PubMed ID: 34662731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The catalytic mechanism of S-acyltransferases: acylation is triggered on by a loose transition state and deacylation is turned off by a tight transition state.
    Wang X; Bakanina Kissanga GM; Li E; Li Q; Yao J
    Phys Chem Chem Phys; 2019 Jun; 21(23):12163-12172. PubMed ID: 31144705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry.
    Carletti E; Colletier JP; Schopfer LM; Santoni G; Masson P; Lockridge O; Nachon F; Weik M
    Chem Res Toxicol; 2013 Feb; 26(2):280-9. PubMed ID: 23339663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological
    Mukhametgalieva AR; Nemtarev AV; Sykaev VV; Pashirova TN; Masson P
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A
    Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues.
    Bolognesi ML; Bartolini M; Cavalli A; Andrisano V; Rosini M; Minarini A; Melchiorre C
    J Med Chem; 2004 Nov; 47(24):5945-52. PubMed ID: 15537349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters.
    Masson P; Nachon F; Broomfield CA; Lenz DE; Verdier L; Schopfer LM; Lockridge O
    Chem Biol Interact; 2008 Sep; 175(1-3):273-80. PubMed ID: 18508040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Theoretical conformational analysis in the determination of productive conformations of substrates for acetylcholinesterase and butyrylcholinesterase].
    Belinskaia DA; Shestakova NN
    Bioorg Khim; 2005; 31(5):466-73. PubMed ID: 16245689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the distributive pattern of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the medulla oblongata of the golden hamster (Mesocricetus auratus). A study on the topographical and functional linkages of the two enzymes.
    Parveen S; Tewari HB
    Arch Anat Microsc Morphol Exp; 1986-1987; 75(1):45-59. PubMed ID: 3789728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.