BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1229 related articles for article (PubMed ID: 24595401)

  • 21. Impact of fatigue on gender-based high-risk landing strategies.
    McLean SG; Fellin RE; Suedekum N; Calabrese G; Passerallo A; Joy S
    Med Sci Sports Exerc; 2007 Mar; 39(3):502-14. PubMed ID: 17473777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program.
    Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL
    Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical Differences of Multidirectional Jump Landings Among Female Basketball and Soccer Players.
    Taylor JB; Ford KR; Schmitz RJ; Ross SE; Ackerman TA; Shultz SJ
    J Strength Cond Res; 2017 Nov; 31(11):3034-3045. PubMed ID: 29065078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton.
    Kimura Y; Ishibashi Y; Tsuda E; Yamamoto Y; Hayashi Y; Sato S
    Br J Sports Med; 2012 Mar; 46(3):207-13. PubMed ID: 21536708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hip-abductor fatigue and single-leg landing mechanics in women athletes.
    Patrek MF; Kernozek TW; Willson JD; Wright GA; Doberstein ST
    J Athl Train; 2011; 46(1):31-42. PubMed ID: 21214348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Fatigue Protocols on Lower Limb Neuromuscular Function and Implications for Anterior Cruciate Ligament Injury Prevention Training: A Systematic Review.
    Barber-Westin SD; Noyes FR
    Am J Sports Med; 2017 Dec; 45(14):3388-3396. PubMed ID: 28298066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Change in Drop-Landing Mechanics Over 2 Years in Young Athletes After Anterior Cruciate Ligament Reconstruction.
    Ithurburn MP; Paterno MV; Thomas S; Pennell ML; Evans KD; Magnussen RA; Schmitt LC
    Am J Sports Med; 2019 Sep; 47(11):2608-2616. PubMed ID: 31373856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC; Barth JT
    Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks.
    Pappas E; Carpes FP
    J Sci Med Sport; 2012 Jan; 15(1):87-92. PubMed ID: 21925949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue.
    Kernozek TW; Torry MR; Iwasaki M
    Am J Sports Med; 2008 Mar; 36(3):554-65. PubMed ID: 18006677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The combined impact of a perceptual-cognitive task and neuromuscular fatigue on knee biomechanics during landing.
    Mejane J; Faubert J; Romeas T; Labbe DR
    Knee; 2019 Jan; 26(1):52-60. PubMed ID: 30583887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using trunk kinematics to predict kinetic asymmetries during double-leg jump-landings in collegiate athletes following anterior cruciate ligament reconstruction.
    Song Y; Li L; Jensen MA; Dai B
    Gait Posture; 2023 May; 102():80-85. PubMed ID: 36934474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.
    Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is Fatigue a Risk Factor for Anterior Cruciate Ligament Rupture?
    Bourne MN; Webster KE; Hewett TE
    Sports Med; 2019 Nov; 49(11):1629-1635. PubMed ID: 31183767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Young Athletes After Anterior Cruciate Ligament Reconstruction With Single-Leg Landing Asymmetries at the Time of Return to Sport Demonstrate Decreased Knee Function 2 Years Later.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2017 Sep; 45(11):2604-2613. PubMed ID: 28644677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.