BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24595829)

  • 1. Genetic variation and a fitness tradeoff in the tolerance of gray treefrog (Hyla versicolor) tadpoles to the insecticide carbaryl.
    Semlitsch RD; Bridges CM; Welch AM
    Oecologia; 2000 Oct; 125(2):179-185. PubMed ID: 24595829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor).
    Relyea RA; Mills N
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2491-6. PubMed ID: 11226266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Here today, gone tomorrow: Short-term retention of pesticide-induced tolerance in amphibians.
    Jones DK; Relyea RA
    Environ Toxicol Chem; 2015 Oct; 34(10):2295-301. PubMed ID: 25940070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pesticide exposure and the amphibian chytrid fungus on gray treefrog (Hyla chrysoscelis) metamorphosis.
    Gaietto KM; Rumschlag SL; Boone MD
    Environ Toxicol Chem; 2014 Oct; 33(10):2358-62. PubMed ID: 25044296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining multiple sublethal contaminants on the gray treefrog (Hyla versicolor): Effects of an insecticide, herbicide, and fertilizer.
    Boone MD; Bridges-Britton CM
    Environ Toxicol Chem; 2006 Dec; 25(12):3261-5. PubMed ID: 17220097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae.
    Hanlon SM; Parris MJ
    Environ Toxicol Chem; 2014 Jan; 33(1):216-22. PubMed ID: 24259231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COSTS AND BENEFITS OF A PREDATOR-INDUCED POLYPHENISM IN THE GRAY TREEFROG HYLA CHRYSOSCELIS.
    McCollum SA; Van Buskirk J
    Evolution; 1996 Apr; 50(2):583-593. PubMed ID: 28568914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Previous exposure of predatory fish to a pesticide alters palatability of larval amphibian prey.
    Hanlon SM; Parris MJ
    Environ Toxicol Chem; 2013 Dec; 32(12):2861-5. PubMed ID: 24383102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish predation in size-structured populations of treefrog tadpoles.
    Semlitsch RD; Gibbons JW
    Oecologia; 1988 Apr; 75(3):321-326. PubMed ID: 28312677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans).
    Boone MD; Hammond SA; Veldhoen N; Youngquist M; Helbing CC
    Aquat Toxicol; 2013 Apr; 130-131():139-48. PubMed ID: 23399446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in metal tolerance associated with population exposure history in Southern toads (Anaxyrus terrestris).
    Flynn RW; Love CN; Coleman A; Lance SL
    Aquat Toxicol; 2019 Feb; 207():163-169. PubMed ID: 30572176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single and interactive effects of malathion, overwintered green frog tadpoles, and cyanobacteria on gray treefrog tadpoles.
    Mackey MJ; Boone MD
    Environ Toxicol Chem; 2009 Mar; 28(3):637-43. PubMed ID: 18937534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic variation and the distribution of an amphibian polyploid complex.
    Otto CR; Snodgrass JW; Forester DC; Mitchell JC; Miller RW
    J Anim Ecol; 2007 Nov; 76(6):1053-61. PubMed ID: 17922702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting effects of nitrogenous pollution on fitness and swimming performance of Iberian waterfrog, Pelophylax perezi (Seoane, 1885), larvae in mesocosms and field enclosures.
    Egea-Serrano A; Tejedo M
    Aquat Toxicol; 2014 Jan; 146():144-53. PubMed ID: 24296112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna.
    Coors A; Vanoverbeke J; De Bie T; De Meester L
    Aquat Toxicol; 2009 Oct; 95(1):71-9. PubMed ID: 19747740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanics of air breathing in gray tree frog tadpoles,
    Phillips JR; Hewes AE; Schwenk K
    J Exp Biol; 2020 Mar; 223(Pt 5):. PubMed ID: 32041808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing and frequency of sublethal exposure modifies the induction and retention of increased insecticide tolerance in wood frogs (Lithobates sylvaticus).
    Jones DK; Yates EK; Mattes BM; Hintz WD; Schuler MS; Relyea RA
    Environ Toxicol Chem; 2018 Aug; 37(8):2188-2197. PubMed ID: 29786147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbaryl concentration gradients in realistic environments and their influence on our understanding of the tadpole food web.
    Bulen BJ; Distel CA
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):343-50. PubMed ID: 21221965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.
    Welch AM; Smith MJ; Gerhardt HC
    Evolution; 2014 Jun; 68(6):1629-39. PubMed ID: 24621402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color.
    McCollum SA; Leimberger JD
    Oecologia; 1997 Feb; 109(4):615-621. PubMed ID: 28307347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.