BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 2459594)

  • 1. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1996 Jul; 331(1):69-78. PubMed ID: 8660685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of reactive oxygen species in the antitumor activity of bleomycin.
    Kappus H; Bothe D; Mahmutoglu I
    Free Radic Res Commun; 1990; 11(4-5):261-6. PubMed ID: 1710590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycling of bleomycin-Fe(III) by an NADH-dependent enzyme, and DNA damage in isolated rat liver nuclei.
    Mahmutoglu I; Kappus H
    Biochem Pharmacol; 1987 Nov; 36(21):3677-81. PubMed ID: 2445349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of liver microsomes with polyethylene glycol and purification of NADH-cytochrome b5 oxidoreductase and cytochrome b5.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1994 Dec; 315(2):438-44. PubMed ID: 7986089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans.
    Kurian JR; Bajad SU; Miller JL; Chin NA; Trepanier LA
    J Pharmacol Exp Ther; 2004 Dec; 311(3):1171-8. PubMed ID: 15302896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation.
    Yang MX; Cederbaum AI
    Arch Biochem Biophys; 1995 Dec; 324(2):282-92. PubMed ID: 8554320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Changes in NADH-cytochrome c reductase activity following phenobarbital treatment.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):61-6. PubMed ID: 4364831
    [No Abstract]   [Full Text] [Related]  

  • 12. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes.
    Clement B; Behrens D; Amschler J; Matschke K; Wolf S; Havemeyer A
    Life Sci; 2005 May; 77(2):205-19. PubMed ID: 15862605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii.
    Utecht RE; Kurtz DM
    Biochim Biophys Acta; 1988 Mar; 953(2):164-78. PubMed ID: 2831990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Resolution of the complex by triton X-100.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):55-60. PubMed ID: 4364830
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxygen radical formation and DNA damage due to enzymatic reduction of bleomycin-Fe(III).
    Mahmutoglu I; Scheulen ME; Kappus H
    Arch Toxicol; 1987; 60(1-3):150-3. PubMed ID: 2441682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive activation of mitomycin C by NADH:cytochrome b5 reductase.
    Hodnick WF; Sartorelli AC
    Cancer Res; 1993 Oct; 53(20):4907-12. PubMed ID: 8402680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of microsomal cytochrome b5 in the metabolism of ethanol, drugs and the desaturation of fatty acids.
    Ozols J
    Ann Clin Res; 1976; 8 Suppl 17():182-92. PubMed ID: 12714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the interaction of bleomycin A2 with rat lung microsomes. II. Involvement of adventitious iron and reactive oxygen in bleomycin-mediated DNA chain breakage.
    Trush MA; Mimnaugh EG; Ginsburg E; Gram TE
    J Pharmacol Exp Ther; 1982 Apr; 221(1):159-65. PubMed ID: 7062279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.