BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24596290)

  • 1. Comparing effective population sizes of dominant marine alphaproteobacteria lineages.
    Luo H; Swan BK; Stepanauskas R; Hughes AL; Moran MA
    Environ Microbiol Rep; 2014 Apr; 6(2):167-72. PubMed ID: 24596290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of divergent life history strategies in marine alphaproteobacteria.
    Luo H; Csuros M; Hughes AL; Moran MA
    mBio; 2013 Jul; 4(4):. PubMed ID: 23839216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures.
    Zheng Q; Wang Y; Xie R; Lang AS; Liu Y; Lu J; Zhang X; Sun J; Suttle CA; Jiao N
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic classification of heterotrophic bacteria associated with filamentous marine cyanobacteria in culture.
    Hube AE; Heyduck-Söller B; Fischer U
    Syst Appl Microbiol; 2009 Jul; 32(4):256-65. PubMed ID: 19423262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean.
    Giebel HA; Brinkhoff T; Zwisler W; Selje N; Simon M
    Environ Microbiol; 2009 Aug; 11(8):2164-78. PubMed ID: 19689707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11).
    Logares R; Bråte J; Heinrich F; Shalchian-Tabrizi K; Bertilsson S
    Mol Biol Evol; 2010 Feb; 27(2):347-57. PubMed ID: 19808864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom.
    González JM; Simó R; Massana R; Covert JS; Casamayor EO; Pedrós-Alió C; Moran MA
    Appl Environ Microbiol; 2000 Oct; 66(10):4237-46. PubMed ID: 11010865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basin-scale patterns in the abundance of SAR11 subclades, marine Actinobacteria (OM1), members of the Roseobacter clade and OCS116 in the South Atlantic.
    Morris RM; Frazar CD; Carlson CA
    Environ Microbiol; 2012 May; 14(5):1133-44. PubMed ID: 22225975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters.
    Alonso C; Pernthaler J
    Environ Microbiol; 2006 Nov; 8(11):2022-30. PubMed ID: 17014500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection Maintains Low Genomic GC Content in Marine SAR11 Lineages.
    Luo H; Thompson LR; Stingl U; Hughes AL
    Mol Biol Evol; 2015 Oct; 32(10):2738-48. PubMed ID: 26116859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity and abundance of "Pelagibacterales" (SAR11) in the Baltic Sea salinity gradient.
    Herlemann DP; Woelk J; Labrenz M; Jürgens K
    Syst Appl Microbiol; 2014 Dec; 37(8):601-4. PubMed ID: 25444644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecology. Marine bugs and carbon flow.
    Fenchel T
    Science; 2001 Jun; 292(5526):2444-5. PubMed ID: 11431556
    [No Abstract]   [Full Text] [Related]  

  • 13. SAR11 clade dominates ocean surface bacterioplankton communities.
    Morris RM; Rappé MS; Connon SA; Vergin KL; Siebold WA; Carlson CA; Giovannoni SJ
    Nature; 2002 Dec 19-26; 420(6917):806-10. PubMed ID: 12490947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese Is Essential for PlcP Metallophosphoesterase Activity Involved in Lipid Remodeling in Abundant Marine Heterotrophic Bacteria.
    Wei T; Quareshy M; Zhang YZ; Scanlan DJ; Chen Y
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abundant proteorhodopsin genes in the North Atlantic Ocean.
    Campbell BJ; Waidner LA; Cottrell MT; Kirchman DL
    Environ Microbiol; 2008 Jan; 10(1):99-109. PubMed ID: 18211270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific.
    Stevens H; Ulloa O
    Environ Microbiol; 2008 May; 10(5):1244-59. PubMed ID: 18294206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean.
    Kolber ZS; Plumley FG; Lang AS; Beatty JT; Blankenship RE; VanDover CL; Vetriani C; Koblizek M; Rathgeber C; Falkowski PG
    Science; 2001 Jun; 292(5526):2492-5. PubMed ID: 11431568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean.
    Vila-Costa M; Pinhassi J; Alonso C; Pernthaler J; Simó R
    Environ Microbiol; 2007 Oct; 9(10):2451-63. PubMed ID: 17803771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean.
    Song J; Oh HM; Cho JC
    FEMS Microbiol Lett; 2009 Jun; 295(2):141-7. PubMed ID: 19459973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.
    Farnelid H; Harder J; Bentzon-Tilia M; Riemann L
    Environ Microbiol; 2014 Oct; 16(10):3072-82. PubMed ID: 24330580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.