These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 24596312)
1. Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT-amine complex. Qi W; Xu M; Pang L; Liu Z; Zhang W; Majeed S; Xu G Chemistry; 2014 Apr; 20(16):4829-35. PubMed ID: 24596312 [TBL] [Abstract][Full Text] [Related]
2. Electrochemiluminescence resonance energy transfer based on Ru(phen)3(2+)-doped silica nanoparticles and its application in "turn-on" detection of ozone. Qi W; Wu D; Zhao J; Liu Z; Zhang W; Zhang L; Xu G Anal Chem; 2013 Mar; 85(6):3207-12. PubMed ID: 23414582 [TBL] [Abstract][Full Text] [Related]
3. A reversible dual-response fluorescence switch for the detection of multiple analytes. Geng J; Liu P; Liu B; Guan G; Zhang Z; Han MY Chemistry; 2010 Mar; 16(12):3720-7. PubMed ID: 20151433 [TBL] [Abstract][Full Text] [Related]
4. 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution. Wang YQ; Zou WS Talanta; 2011 Jul; 85(1):469-75. PubMed ID: 21645727 [TBL] [Abstract][Full Text] [Related]
5. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Ma Y; Wang L Talanta; 2014 Mar; 120():100-5. PubMed ID: 24468348 [TBL] [Abstract][Full Text] [Related]
6. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Tu R; Liu B; Wang Z; Gao D; Wang F; Fang Q; Zhang Z Anal Chem; 2008 May; 80(9):3458-65. PubMed ID: 18336012 [TBL] [Abstract][Full Text] [Related]
7. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Yu Y; Cao Q; Zhou M; Cui H Biosens Bioelectron; 2013 May; 43():137-42. PubMed ID: 23298624 [TBL] [Abstract][Full Text] [Related]
8. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism. Şen FB; Bener M; Apak R J Fluoresc; 2021 Jul; 31(4):989-997. PubMed ID: 33880706 [TBL] [Abstract][Full Text] [Related]
9. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines. Sheaff CN; Eastwood D; Wai CM Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719 [TBL] [Abstract][Full Text] [Related]
10. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Li S; Zhang D; Liu J; Cheng C; Zhu L; Li C; Lu Y; Low SS; Su B; Liu Q Biosens Bioelectron; 2019 Mar; 129():284-291. PubMed ID: 30245166 [TBL] [Abstract][Full Text] [Related]
11. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl. Ular N; Üzer A; Durmazel S; Erçağ E; Apak R ACS Sens; 2018 Nov; 3(11):2335-2342. PubMed ID: 30350589 [TBL] [Abstract][Full Text] [Related]
12. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT. Sharma SP; Lahiri SC Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):144-53. PubMed ID: 17765603 [TBL] [Abstract][Full Text] [Related]
14. A novel electrochemiluminescence tetracyclines sensor based on a Ru(bpy)₃²⁺-doped silica nanoparticles/Nafion film modified electrode. Chen X; Zhao L; Tian X; Lian S; Huang Z; Chen X Talanta; 2014 Nov; 129():26-31. PubMed ID: 25127561 [TBL] [Abstract][Full Text] [Related]
15. Photoluminescence detection of 2,4,6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Zhen L; Ford N; Gale DK; Roesijadi G; Rorrer GL Biosens Bioelectron; 2016 May; 79():742-8. PubMed ID: 26774089 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon. Zang J; Guo CX; Hu F; Yu L; Li CM Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969 [TBL] [Abstract][Full Text] [Related]
17. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. Xu S; Lu H; Li J; Song X; Wang A; Chen L; Han S ACS Appl Mater Interfaces; 2013 Aug; 5(16):8146-54. PubMed ID: 23876063 [TBL] [Abstract][Full Text] [Related]
18. Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. Cizek K; Prior C; Thammakhet C; Galik M; Linker K; Tsui R; Cagan A; Wake J; La Belle J; Wang J Anal Chim Acta; 2010 Feb; 661(1):117-21. PubMed ID: 20113724 [TBL] [Abstract][Full Text] [Related]
19. Tetrathiafulvalene-capped hybrid materials for the optical detection of explosives. Salinas Y; Martínez-Máñez R; Jeppesen JO; Petersen LH; Sancenón F; Marcos MD; Soto J; Guillem C; Amorós P ACS Appl Mater Interfaces; 2013 Mar; 5(5):1538-43. PubMed ID: 23373746 [TBL] [Abstract][Full Text] [Related]
20. Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Gao D; Wang Z; Liu B; Ni L; Wu M; Zhang Z Anal Chem; 2008 Nov; 80(22):8545-53. PubMed ID: 18847285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]