BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24596379)

  • 1. Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene.
    Ecimovic P; Murray D; Doran P; Buggy DJ
    Anticancer Res; 2014 Mar; 34(3):1321-31. PubMed ID: 24596379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene.
    Ecimovic P; Murray D; Doran P; McDonald J; Lambert DG; Buggy DJ
    Br J Anaesth; 2011 Dec; 107(6):916-23. PubMed ID: 21857017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sevoflurane on breast cancer cell function in vitro.
    Ecimovic P; McHugh B; Murray D; Doran P; Buggy DJ
    Anticancer Res; 2013 Oct; 33(10):4255-60. PubMed ID: 24122989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro.
    Deegan CA; Murray D; Doran P; Ecimovic P; Moriarty DC; Buggy DJ
    Br J Anaesth; 2009 Nov; 103(5):685-90. PubMed ID: 19776028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propofol reduces MMPs expression by inhibiting NF-κB activity in human MDA-MB-231 cells.
    Li Q; Zhang L; Han Y; Jiang Z; Wang Q
    Biomed Pharmacother; 2012 Feb; 66(1):52-6. PubMed ID: 22264881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231.
    Meng C; Song L; Wang J; Li D; Liu Y; Cui X
    Oncol Rep; 2017 Feb; 37(2):841-848. PubMed ID: 28035403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells.
    Kang H; Mansel RE; Jiang WG
    Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer.
    Murray D; Horgan G; Macmathuna P; Doran P
    Br J Cancer; 2008 Oct; 99(8):1322-9. PubMed ID: 18827818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation.
    Antalis CJ; Arnold T; Rasool T; Lee B; Buhman KK; Siddiqui RA
    Breast Cancer Res Treat; 2010 Aug; 122(3):661-70. PubMed ID: 19851860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells.
    Bartucci M; Morelli C; Mauro L; Andò S; Surmacz E
    Cancer Res; 2001 Sep; 61(18):6747-54. PubMed ID: 11559546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Overexpression of NDRG1: relationship with proliferative activity and invasiveness of breast cancer cell line and breast cancer metastasis].
    Wang Z; Liu Q; Chen Q; Zhu R; Zhu HG
    Zhonghua Bing Li Xue Za Zhi; 2006 Jun; 35(6):333-8. PubMed ID: 16834906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate.
    Khan AA; Alanazi AM; Jabeen M; Chauhan A; Abdelhameed AS
    Anticancer Res; 2013 Jun; 33(6):2517-24. PubMed ID: 23749903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of breast cancer metastasis suppressor-1, BRMS-1, in human breast cancer and the biological impact of BRMS-1 on the migration of breast cancer cells.
    Zhang Y; Ye L; Tan Y; Sun P; Ji K; Jiang WG
    Anticancer Res; 2014 Mar; 34(3):1417-26. PubMed ID: 24596389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of angio-associated migratory cell protein (AAMP) on breast cancer cells in vitro and its clinical significance.
    Yin Y; Sanders AJ; Jiang WG
    Anticancer Res; 2013 Apr; 33(4):1499-509. PubMed ID: 23564791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel.
    Lee GW; Park HS; Kim EJ; Cho YW; Kim GT; Mun YJ; Choi EJ; Lee JS; Han J; Kang D
    Acta Physiol (Oxf); 2012 Apr; 204(4):513-24. PubMed ID: 21910834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors.
    Amemiya Y; Yang W; Benatar T; Nofech-Mozes S; Yee A; Kahn H; Holloway C; Seth A
    Breast Cancer Res Treat; 2011 Apr; 126(2):373-84. PubMed ID: 20464481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of local anesthetics on breast cancer cell viability and migration.
    Li R; Xiao C; Liu H; Huang Y; Dilger JP; Lin J
    BMC Cancer; 2018 Jun; 18(1):666. PubMed ID: 29914426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of serum from patients administered distinct anaesthetic techniques on apoptosis in breast cancer cells in vitro: a pilot study.
    Jaura AI; Flood G; Gallagher HC; Buggy DJ
    Br J Anaesth; 2014 Jul; 113 Suppl 1():i63-7. PubMed ID: 25009197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of non-volatile anesthetics on the migration behavior of the human breast cancer cell line MDA-MB-468.
    Garib V; Niggemann B; Zänker KS; Brandt L; Kubens BS
    Acta Anaesthesiol Scand; 2002 Aug; 46(7):836-44. PubMed ID: 12139540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional and transcriptomic analysis of NET1 bioactivity in gastric cancer.
    Bennett G; Sadlier D; Doran PP; Macmathuna P; Murray DW
    BMC Cancer; 2011 Feb; 11():50. PubMed ID: 21284875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.