BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24596545)

  • 21. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.
    Henry KS; Kale S; Scheidt RE; Heinz MG
    Hear Res; 2011 Oct; 280(1-2):236-44. PubMed ID: 21699970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the Interplay Between Cochlear Gain Loss and Temporal Envelope Coding Deficits.
    Verhulst S; Piktel P; Jagadeesh A; Mauermann M
    Adv Exp Med Biol; 2016; 894():467-475. PubMed ID: 27080688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers.
    Recio-Spinoso A; Temchin AN; van Dijk P; Fan YH; Ruggero MA
    J Neurophysiol; 2005 Jun; 93(6):3615-34. PubMed ID: 15659532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex-Tone Pitch Discrimination in Listeners With Sensorineural Hearing Loss.
    Bianchi F; Fereczkowski M; Zaar J; Santurette S; Dau T
    Trends Hear; 2016 Sep; 20():. PubMed ID: 27604780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal Response Properties of the Auditory Nerve in Implanted Children with Auditory Neuropathy Spectrum Disorder and Implanted Children with Sensorineural Hearing Loss.
    He S; Abbas PJ; Doyle DV; McFayden TC; Mulherin S
    Ear Hear; 2016; 37(4):397-411. PubMed ID: 26655913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diminished temporal coding with sensorineural hearing loss emerges in background noise.
    Henry KS; Heinz MG
    Nat Neurosci; 2012 Oct; 15(10):1362-4. PubMed ID: 22960931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific loss of neural sensitivity to interaural time difference of unmodulated noise stimuli following noise-induced hearing loss.
    Haragopal H; Dorkoski R; Pollard AR; Whaley GA; Wohl TR; Stroud NC; Day ML
    J Neurophysiol; 2020 Oct; 124(4):1165-1182. PubMed ID: 32845200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted effects of sensorineural hearing loss on across-fiber envelope coding in the auditory nerve.
    Swaminathan J; Heinz MG
    J Acoust Soc Am; 2011 Jun; 129(6):4001-13. PubMed ID: 21682421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.
    Heeringa AN; van Dijk P
    Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation.
    Heffer LF; Sly DJ; Fallon JB; White MW; Shepherd RK; O'Leary SJ
    J Neurophysiol; 2010 Dec; 104(6):3124-35. PubMed ID: 20926607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing Cochlear-Place Specific Temporal Coding Using Multi-Band Complex Tones to Measure Envelope-Following Responses.
    Wang L; Bharadwaj H; Shinn-Cunningham B
    Neuroscience; 2019 May; 407():67-74. PubMed ID: 30826519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners.
    Bacon SP; Viemeister NF
    Audiology; 1985; 24(2):117-34. PubMed ID: 3994589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses.
    Shaheen LA; Valero MD; Liberman MC
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):727-45. PubMed ID: 26323349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal modulation transfer functions in the European Starling (Sturnus vulgaris): II. Responses of auditory-nerve fibres.
    Gleich O; Klump GM
    Hear Res; 1995 Jan; 82(1):81-92. PubMed ID: 7744716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multisensory Integration Enhances Temporal Coding in Ventral Cochlear Nucleus Bushy Cells.
    Heeringa AN; Wu C; Shore SE
    J Neurosci; 2018 Mar; 38(11):2832-2843. PubMed ID: 29440557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preservation of amplitude modulation coding in the presence of background noise by chinchilla auditory-nerve fibers.
    Frisina RD; Karcich KJ; Tracy TC; Sullivan DM; Walton JP; Colombo J
    J Acoust Soc Am; 1996 Jan; 99(1):475-90. PubMed ID: 8568035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-path model of auditory modulation detection using temporal fine structure and envelope cues.
    Ewert SD; Paraouty N; Lorenzi C
    Eur J Neurosci; 2020 Mar; 51(5):1265-1278. PubMed ID: 29368797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.