BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24596688)

  • 1. Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach.
    Barbieri E; Sestili P; Vallorani L; Guescini M; Calcabrini C; Gioacchini AM; Annibalini G; Lucertini F; Piccoli G; Stocchi V
    Muscles Ligaments Tendons J; 2013 Oct; 3(4):254-66. PubMed ID: 24596688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis).
    Ristow M; Zarse K
    Exp Gerontol; 2010 Jun; 45(6):410-8. PubMed ID: 20350594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitohormesis in exercise training.
    Merry TL; Ristow M
    Free Radic Biol Med; 2016 Sep; 98():123-130. PubMed ID: 26654757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitohormesis, an Antiaging Paradigm.
    Bárcena C; Mayoral P; Quirós PM
    Int Rev Cell Mol Biol; 2018; 340():35-77. PubMed ID: 30072093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS).
    Ristow M; Schmeisser K
    Dose Response; 2014 May; 12(2):288-341. PubMed ID: 24910588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality.
    Tapia PC
    Med Hypotheses; 2006; 66(4):832-43. PubMed ID: 16242247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration.
    Da W; Chen Q; Shen B
    Biol Res; 2024 Jun; 57(1):37. PubMed ID: 38824571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.
    Pan Y
    Exp Gerontol; 2011 Nov; 46(11):847-52. PubMed ID: 21884780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise-Induced Mitohormesis for the Maintenance of Skeletal Muscle and Healthspan Extension.
    Musci RV; Hamilton KL; Linden MA
    Sports (Basel); 2019 Jul; 7(7):. PubMed ID: 31336753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid peroxidation is involved in calcium dependent upregulation of mitochondrial metabolism in skeletal muscle.
    Al-Menhali AS; Banu S; Angelova PR; Barcaru A; Horvatovich P; Abramov AY; Jaganjac M
    Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129487. PubMed ID: 31734461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.
    Singh F; Charles AL; Schlagowski AI; Bouitbir J; Bonifacio A; Piquard F; Krähenbühl S; Geny B; Zoll J
    Biochim Biophys Acta; 2015 Jul; 1853(7):1574-85. PubMed ID: 25769432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitohormesis; Potential implications in neurodegenerative diseases.
    Gohel D; Singh R
    Mitochondrion; 2021 Jan; 56():40-46. PubMed ID: 33220499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling.
    Coleman V; Sa-Nguanmoo P; Koenig J; Schulz TJ; Grune T; Klaus S; Kipp AP; Ost M
    Sci Rep; 2018 Feb; 8(1):2446. PubMed ID: 29402993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NOD2 activation induces oxidative stress contributing to mitochondrial dysfunction and insulin resistance in skeletal muscle cells.
    Maurya CK; Arha D; Rai AK; Kumar SK; Pandey J; Avisetti DR; Kalivendi SV; Klip A; Tamrakar AK
    Free Radic Biol Med; 2015 Dec; 89():158-69. PubMed ID: 26404168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction.
    Barazzoni R; Zanetti M; Gortan Cappellari G; Semolic A; Boschelle M; Codarin E; Pirulli A; Cattin L; Guarnieri G
    Diabetologia; 2012 Mar; 55(3):773-82. PubMed ID: 22159911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance.
    Kruse R; Sahebekhtiari N; Højlund K
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial uncoupling and longevity - A role for mitokines?
    Klaus S; Ost M
    Exp Gerontol; 2020 Feb; 130():110796. PubMed ID: 31786315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice.
    Paglialunga S; van Bree B; Bosma M; Valdecantos MP; Amengual-Cladera E; Jörgensen JA; van Beurden D; den Hartog GJM; Ouwens DM; Briedé JJ; Schrauwen P; Hoeks J
    Diabetologia; 2012 Oct; 55(10):2759-2768. PubMed ID: 22782287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous metabolites promote stress resistance through induction of mitohormesis.
    Fischer F; Ristow M
    EMBO Rep; 2020 May; 21(5):e50340. PubMed ID: 32329201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.