These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 24597044)
1. A novel eco-friendly technique for efficient control of lime water softening process. Ostovar M; Amiri M Water Environ Res; 2013 Dec; 85(12):2285-93. PubMed ID: 24597044 [TBL] [Abstract][Full Text] [Related]
2. Optimisation of Lime-Soda process parameters for reduction of hardness in aqua-hatchery practices using Taguchi methods. Yavalkar SP; Bhole AG; Babu PV; Prakash C J Environ Sci Eng; 2012 Apr; 54(2):260-7. PubMed ID: 24749379 [TBL] [Abstract][Full Text] [Related]
3. Effect of water treatment additives on lime softening residual trace chemical composition--implications for disposal and reuse. Cheng W; Roessler J; Blaisi NI; Townsend TG J Environ Manage; 2014 Dec; 145():240-8. PubMed ID: 25073099 [TBL] [Abstract][Full Text] [Related]
4. Application of fractal dimensions to study the structure of flocs formed in lime softening process. Vahedi A; Gorczyca B Water Res; 2011 Jan; 45(2):545-56. PubMed ID: 20937512 [TBL] [Abstract][Full Text] [Related]
5. Byproduct recovery from reclaimed water reverse osmosis concentrate using lime and soda-ash treatment. Mohammadesmaeili F; Badr MK; Abbaszadegan M; Fox P Water Environ Res; 2010 Apr; 82(4):342-50. PubMed ID: 20432652 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the impact of lime softening waste disposal in natural environments. Blaisi NI; Roessler J; Cheng W; Townsend T; Al-Abed SR Waste Manag; 2015 Sep; 43():524-32. PubMed ID: 26116006 [TBL] [Abstract][Full Text] [Related]
7. Process water treatment at the Ranger uranium mine, Northern Australia. Topp H; Russell H; Davidson J; Jones D; Levy V; Gilderdale M; Davis S; Ring R; Conway G; Macintosh P; Sertorio L Water Sci Technol; 2003; 47(10):155-62. PubMed ID: 12862230 [TBL] [Abstract][Full Text] [Related]
8. Impact of influent deviations on polymer coagulant dose in warm lime softening of synthetic SAGD produced water. Zhang L; Mishra D; Zhang K; Perdicakis B; Pernitsky D; Lu Q Water Res; 2021 Jul; 200():117202. PubMed ID: 34015576 [TBL] [Abstract][Full Text] [Related]
9. Interactions between chloride and sulfate or silica removals from wastewater using an advanced lime-aluminum softening process: equilibrium modeling. Abdel-Wahab A; Batchelor B Water Environ Res; 2007 May; 79(5):528-35. PubMed ID: 17571843 [TBL] [Abstract][Full Text] [Related]
10. Centralized softening as a solution to chloride pollution: An empirical analysis based on Minnesota cities. Bakshi B; Doucette EM; Kyser SJ PLoS One; 2021; 16(2):e0246688. PubMed ID: 33544771 [TBL] [Abstract][Full Text] [Related]
11. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent. Katsoyiannis IA; Gkotsis P; Castellana M; Cartechini F; Zouboulis AI J Environ Manage; 2017 Apr; 190():132-139. PubMed ID: 28040589 [TBL] [Abstract][Full Text] [Related]
12. Application of Chemical Crystallization Circulating Pellet Fluidized Beds for Softening and Saving Circulating Water in Thermal Power Plants. Hu R; Huang T; Wang T; Wang H; Long X Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752321 [TBL] [Abstract][Full Text] [Related]
13. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H Chemosphere; 2016 Feb; 144():148-53. PubMed ID: 26347937 [TBL] [Abstract][Full Text] [Related]
14. Conventional approach for abattoir wastewater treatment. Satyanarayan S; Ramakant ; Vanerkar AP Environ Technol; 2005 Apr; 26(4):441-7. PubMed ID: 15906496 [TBL] [Abstract][Full Text] [Related]
15. Antiscalant removal in accelerated desupersaturation of RO concentrate via chemically-enhanced seeded precipitation (CESP). McCool BC; Rahardianto A; Cohen Y Water Res; 2012 Sep; 46(13):4261-71. PubMed ID: 22673342 [TBL] [Abstract][Full Text] [Related]
16. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess. Lim S; Jeon W; Lee J; Lee K; Kim N Water Res; 2002 Oct; 36(17):4177-84. PubMed ID: 12420922 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process. Wu XL; Guan YT; Zhang X; Huang X; Qian Y Environ Technol; 2002 Jun; 23(6):677-84. PubMed ID: 12118619 [TBL] [Abstract][Full Text] [Related]
18. Interactions between chloride and sulfate or silica removals using an advanced lime-aluminum softening process. Abdel-Wahab A; Batchelor B Water Environ Res; 2006 Dec; 78(13):2474-9. PubMed ID: 17243247 [TBL] [Abstract][Full Text] [Related]
19. Electrokinetic study of calcium carbonate and magnesium hydroxide particles in lime softening. Zhang L; Mishra D; Zhang K; Perdicakis B; Pernitsky D; Lu Q Water Res; 2020 Nov; 186():116415. PubMed ID: 32927423 [TBL] [Abstract][Full Text] [Related]
20. Chloride removal from recycled cooling water using ultra-high lime with aluminum process. Abdel-Wahab A; Batchelor B Water Environ Res; 2002; 74(3):256-63. PubMed ID: 12150248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]