These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24597045)

  • 1. Electrochemical treatment of Reactive Black 5 textile wastewater: optimization, kinetics, and disposal study.
    Bansal S; Kushwaha JP; Sangal VK
    Water Environ Res; 2013 Dec; 85(12):2294-306. PubMed ID: 24597045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of iron mesh double layer as anode for the electrochemical treatment of Reactive Black 5 dye.
    Mook WT; Ajeel MA; Aroua MK; Szlachta M
    J Environ Sci (China); 2017 Apr; 54():184-195. PubMed ID: 28391928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism.
    Hiwarkar AD; Singh S; Srivastava VC; Mall ID
    J Environ Manage; 2017 Aug; 198(Pt 1):144-152. PubMed ID: 28458108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of electro-oxidation process for the treatment of Reactive Orange 107 using response surface methodology.
    Rajkumar K; Muthukumar M
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):148-60. PubMed ID: 21698362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined electrocoagulation and electro-oxidation of industrial textile wastewater treatment in a continuous multi-stage reactor.
    GilPavas E; Arbeláez-Castaño P; Medina J; Acosta DA
    Water Sci Technol; 2017 Nov; 76(9-10):2515-2525. PubMed ID: 29144309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Treatment of Textile Dye Wastewater by Mild Steel Anode.
    Bhavya JG; Rekha HB; Murthy UN
    J Environ Sci Eng; 2014 Apr; 56(2):223-8. PubMed ID: 26563069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.
    Aravind P; Subramanyan V; Ferro S; Gopalakrishnan R
    Water Res; 2016 Apr; 93():230-241. PubMed ID: 26921849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.
    Ahmadi M; Ghanbari F
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19350-61. PubMed ID: 27370537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent.
    Phalakornkule C; Polgumhang S; Tongdaung W; Karakat B; Nuyut T
    J Environ Manage; 2010; 91(4):918-26. PubMed ID: 20042267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-assisted electrochemical degradation of real textile wastewater.
    Alves PA; Malpass GR; Johansen HD; Azevedo EB; Gomes LM; Vilela WF; Motheo AJ
    Water Sci Technol; 2010; 61(2):491-8. PubMed ID: 20107276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
    Boopathy R; Sekaran G
    J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Techno-economical optimization using Box-Behnken (BB) design for chemical oxygen demand and chloride reduction from hospital wastewater by electro-coagulation.
    Bajpai M; Katoch SS
    Water Environ Res; 2020 Dec; 92(12):2140-2154. PubMed ID: 32621524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes.
    Sengil IA; Ozacar M
    J Hazard Mater; 2009 Jan; 161(2-3):1369-76. PubMed ID: 18550279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical oxidation of textile industry wastewater by graphite electrodes.
    Bhatnagar R; Joshi H; Mall ID; Srivastava VC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):955-66. PubMed ID: 24766597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
    Espinoza-Quiñones FR; Fornari MM; Módenes AN; Palácio SM; Trigueros DE; Borba FH; Kroumov AD
    Water Sci Technol; 2009; 60(8):2173-85. PubMed ID: 19844065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.
    Linares Hernández I; Barrera Díaz C; Valdés Cerecero M; Almazán Sánchez PT; Castañeda Juárez M; Lugo Lugo V
    Environ Technol; 2017 Feb; 38(4):433-442. PubMed ID: 27257937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation.
    Guvenc SY; Okut Y; Ozak M; Haktanir B; Bilgili MS
    Water Sci Technol; 2017 Feb; 75(3-4):833-846. PubMed ID: 28234284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical treatment of sunflower oil refinery wastewater and optimization of the parameters using response surface methodology.
    Sharma S; Aygun A; Simsek H
    Chemosphere; 2020 Jun; 249():126511. PubMed ID: 32208219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of oily wastewater of a gas refinery by electrocoagulation using aluminum electrodes.
    Saeedi M; Khalvati-Fahlyani A
    Water Environ Res; 2011 Mar; 83(3):256-64. PubMed ID: 21466073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.