These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 24597549)
1. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Grimm D; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Ulbrich C; Magnusson NE; Infanger M; Bauer J Tissue Eng Part B Rev; 2014 Dec; 20(6):555-66. PubMed ID: 24597549 [TBL] [Abstract][Full Text] [Related]
2. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037 [TBL] [Abstract][Full Text] [Related]
3. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674 [TBL] [Abstract][Full Text] [Related]
4. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Ulbrich C; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Magnusson N; Infanger M; Grosse J; Eilles C; Sundaresan A; Grimm D Biomed Res Int; 2014; 2014():928507. PubMed ID: 25110709 [TBL] [Abstract][Full Text] [Related]
5. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Grimm D; Wehland M; Corydon TJ; Richter P; Prasad B; Bauer J; Egli M; Kopp S; Lebert M; Krüger M Stem Cells Transl Med; 2020 Aug; 9(8):882-894. PubMed ID: 32352658 [TBL] [Abstract][Full Text] [Related]
6. Advances in Microgravity Directed Tissue Engineering. Cui Y; Liu W; Zhao S; Zhao Y; Dai J Adv Healthc Mater; 2023 Sep; 12(23):e2202768. PubMed ID: 36893386 [TBL] [Abstract][Full Text] [Related]
7. An update to space biomedical research: tissue engineering in microgravity bioreactors. Barzegari A; Saei AA Bioimpacts; 2012; 2(1):23-32. PubMed ID: 23678438 [TBL] [Abstract][Full Text] [Related]
8. Biomanufacturing of 3D Tissue Constructs in Microgravity and their Applications in Human Pathophysiological Studies. Ren Z; Harriot AD; Mair DB; Chung MK; Lee PHU; Kim DH Adv Healthc Mater; 2023 Sep; 12(23):e2300157. PubMed ID: 37483106 [TBL] [Abstract][Full Text] [Related]
9. Artificial tissue creation under microgravity conditions: Considerations and future applications. Swaminathan V; Bechtel G; Tchantchaleishvili V Artif Organs; 2021 Dec; 45(12):1446-1455. PubMed ID: 34223657 [TBL] [Abstract][Full Text] [Related]
10. Tissue Engineering of Cartilage Using a Random Positioning Machine. Wehland M; Steinwerth P; Aleshcheva G; Sahana J; Hemmersbach R; Lützenberg R; Kopp S; Infanger M; Grimm D Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339388 [TBL] [Abstract][Full Text] [Related]
11. Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level. Krüger M; Pietsch J; Bauer J; Kopp S; Carvalho DTO; Baatout S; Moreels M; Melnik D; Wehland M; Egli M; Jayashree S; Kobberø SD; Corydon TJ; Nebuloni S; Gass S; Evert M; Infanger M; Grimm D Cell Physiol Biochem; 2019; 52(5):1039-1060. PubMed ID: 30977987 [TBL] [Abstract][Full Text] [Related]
12. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Stamenković V; Keller G; Nesic D; Cogoli A; Grogan SP Tissue Eng Part A; 2010 May; 16(5):1729-36. PubMed ID: 20141387 [TBL] [Abstract][Full Text] [Related]
13. The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Grimm D; Schulz H; Krüger M; Cortés-Sánchez JL; Egli M; Kraus A; Sahana J; Corydon TJ; Hemmersbach R; Wise PM; Infanger M; Wehland M Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328492 [TBL] [Abstract][Full Text] [Related]
14. Fluid and Bubble Flow Detach Adherent Cancer Cells to Form Spheroids on a Random Positioning Machine. Cortés-Sánchez JL; Melnik D; Sandt V; Kahlert S; Marchal S; Johnson IRD; Calvaruso M; Liemersdorf C; Wuest SL; Grimm D; Krüger M Cells; 2023 Nov; 12(22):. PubMed ID: 37998400 [TBL] [Abstract][Full Text] [Related]
15. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Mann V; Grimm D; Corydon TJ; Krüger M; Wehland M; Riwaldt S; Sahana J; Kopp S; Bauer J; Reseland JE; Infanger M; Mari Lian A; Okoro E; Sundaresan A Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889841 [TBL] [Abstract][Full Text] [Related]
16. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Warnke E; Pietsch J; Wehland M; Bauer J; Infanger M; Görög M; Hemmersbach R; Braun M; Ma X; Sahana J; Grimm D Cell Commun Signal; 2014 May; 12():32. PubMed ID: 24885050 [TBL] [Abstract][Full Text] [Related]
17. Microgravity as a means to incorporate HepG2 aggregates in polysaccharide-protein hybrid scaffold. Sarika PR; James NR; Anilkumar PR; Raj DK; Kumary TV J Mater Sci Mater Med; 2016 Feb; 27(2):27. PubMed ID: 26704544 [TBL] [Abstract][Full Text] [Related]
18. What can biofabrication do for space and what can space do for biofabrication? Moroni L; Tabury K; Stenuit H; Grimm D; Baatout S; Mironov V Trends Biotechnol; 2022 Apr; 40(4):398-411. PubMed ID: 34544616 [TBL] [Abstract][Full Text] [Related]
19. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
20. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. Nie HY; Ge J; Liu KG; Yue Y; Li H; Lin HG; Yan HF; Zhang T; Sun HW; Yang JW; Zhou JL; Cui Y Life Sci Space Res (Amst); 2024 May; 41():1-17. PubMed ID: 38670635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]