These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 24597623)
1. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.). Wang S; Xu Y; Li Z; Zhang S; Lim JM; Lee KO; Li C; Qian Q; Jiang A; Qi Y Plant J; 2014 May; 78(4):632-645. PubMed ID: 24597623 [TBL] [Abstract][Full Text] [Related]
2. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119 [TBL] [Abstract][Full Text] [Related]
3. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Zhao H; Ma T; Wang X; Deng Y; Ma H; Zhang R; Zhao J Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360 [TBL] [Abstract][Full Text] [Related]
4. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Kitomi Y; Inahashi H; Takehisa H; Sato Y; Inukai Y Plant Sci; 2012 Jul; 190():116-22. PubMed ID: 22608525 [TBL] [Abstract][Full Text] [Related]
5. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Terasaka K; Blakeslee JJ; Titapiwatanakun B; Peer WA; Bandyopadhyay A; Makam SN; Lee OR; Richards EL; Murphy AS; Sato F; Yazaki K Plant Cell; 2005 Nov; 17(11):2922-39. PubMed ID: 16243904 [TBL] [Abstract][Full Text] [Related]
6. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Yu C; Sun C; Shen C; Wang S; Liu F; Liu Y; Chen Y; Li C; Qian Q; Aryal B; Geisler M; Jiang de A; Qi Y Plant J; 2015 Sep; 83(5):818-30. PubMed ID: 26140668 [TBL] [Abstract][Full Text] [Related]
7. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Wang B; Bailly A; Zwiewka M; Henrichs S; Azzarello E; Mancuso S; Maeshima M; Friml J; Schulz A; Geisler M Plant Cell; 2013 Jan; 25(1):202-14. PubMed ID: 23321285 [TBL] [Abstract][Full Text] [Related]
9. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Cho M; Lee SH; Cho HT Plant Cell; 2007 Dec; 19(12):3930-43. PubMed ID: 18156217 [TBL] [Abstract][Full Text] [Related]
10. CRL6, a member of the CHD protein family, is required for crown root development in rice. Wang Y; Wang D; Gan T; Liu L; Long W; Wang Y; Niu M; Li X; Zheng M; Jiang L; Wan J Plant Physiol Biochem; 2016 Aug; 105():185-194. PubMed ID: 27108205 [TBL] [Abstract][Full Text] [Related]
11. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). Harmoko R; Yoo JY; Ko KS; Ramasamy NK; Hwang BY; Lee EJ; Kim HS; Lee KJ; Oh DB; Kim DY; Lee S; Li Y; Lee SY; Lee KO New Phytol; 2016 Oct; 212(1):108-22. PubMed ID: 27241276 [TBL] [Abstract][Full Text] [Related]
12. Mutation of Wang H; Ouyang Q; Yang C; Zhang Z; Hou D; Liu H; Xu H Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012245 [TBL] [Abstract][Full Text] [Related]
13. Defects in root development and gravity response in the aem1 mutant of rice are associated with reduced auxin efflux. Debi BR; Chhun T; Taketa S; Tsurumi S; Xia K; Miyao A; Hirochika H; Ichii M J Plant Physiol; 2005 Jun; 162(6):678-85. PubMed ID: 16008090 [TBL] [Abstract][Full Text] [Related]
14. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Inahashi H; Shelley IJ; Yamauchi T; Nishiuchi S; Takahashi-Nosaka M; Matsunami M; Ogawa A; Noda Y; Inukai Y Physiol Plant; 2018 Oct; 164(2):216-225. PubMed ID: 29446441 [TBL] [Abstract][Full Text] [Related]
15. OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). Qi Y; Wang S; Shen C; Zhang S; Chen Y; Xu Y; Liu Y; Wu Y; Jiang D New Phytol; 2012 Jan; 193(1):109-120. PubMed ID: 21973088 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of Sun H; Guo X; Xu F; Wu D; Zhang X; Lou M; Luo F; Xu G; Zhang Y Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627334 [TBL] [Abstract][Full Text] [Related]
17. Rice GH3 gene family: regulators of growth and development. Fu J; Yu H; Li X; Xiao J; Wang S Plant Signal Behav; 2011 Apr; 6(4):570-4. PubMed ID: 21447996 [TBL] [Abstract][Full Text] [Related]
19. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen. Song W; Sun H; Li J; Gong X; Huang S; Zhu X; Zhang Y; Xu G Ann Bot; 2013 Nov; 112(7):1383-93. PubMed ID: 24095838 [TBL] [Abstract][Full Text] [Related]
20. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. Hasegawa T; Lucob-Agustin N; Yasufuku K; Kojima T; Nishiuchi S; Ogawa A; Takahashi-Nosaka M; Kano-Nakata M; Inari-Ikeda M; Sato M; Tsuji H; Wainaina CM; Yamauchi A; Inukai Y Plant Sci; 2021 May; 306():110861. PubMed ID: 33775366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]