BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24598040)

  • 1. Performance of (Q)SAR models for predicting Ames mutagenicity of aryl azo and benzidine based compounds.
    Kulkarni SA; Barton-Maclaren TS
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2014; 32(1):46-82. PubMed ID: 24598040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the OECD QSAR Application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 1. Aromatic amines.
    Devillers J; Mombelli E
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):753-69. PubMed ID: 21120760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of new 2,2'-dimethyl-5,5'-dipropoxybenzidine- and 3,3'-dipropoxybenzidine-based direct dye analogs for mutagenic activity by use of the Salmonella/mammalian mutagenicity assay.
    Bae JS; Freeman HS; Warren SH; Claxton LD
    Mutat Res; 2006 Feb; 603(2):173-85. PubMed ID: 16426887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds.
    Gadaleta D; Manganelli S; Manganaro A; Porta N; Benfenati E
    Toxicology; 2016 Aug; 370():20-30. PubMed ID: 27644887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mutagenicity of the urine of rats treated with benzidine dyes (author's transl)].
    Tanaka K
    Sangyo Igaku; 1980 May; 22(3):194-203. PubMed ID: 7452963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.
    Manganelli S; Benfenati E; Manganaro A; Kulkarni S; Barton-Maclaren TS; Honma M
    Toxicol Sci; 2016 Oct; 153(2):316-26. PubMed ID: 27413112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving confidence in (Q)SAR predictions under Canada's Chemicals Management Plan - a chemical space approach.
    Kulkarni SA; Benfenati E; Barton-Maclaren TS
    SAR QSAR Environ Res; 2016 Oct; 27(10):851-863. PubMed ID: 27762155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Leather azo dyes: mutagenic and carcinogenic risks].
    Clonfero E; Venier P; Granella M; Levis AG
    Med Lav; 1990; 81(3):222-9. PubMed ID: 2277597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinogenicity of azo colorants: influence of solubility and bioavailability.
    Golka K; Kopps S; Myslak ZW
    Toxicol Lett; 2004 Jun; 151(1):203-10. PubMed ID: 15177655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenicity of azo dyes: structure-activity relationships.
    Chung KT; Cerniglia CE
    Mutat Res; 1992 Sep; 277(3):201-20. PubMed ID: 1381050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ames testing of Direct Black 38 parallels carcinogenicity testing.
    Gregory AR; Elliott J; Kluge P
    J Appl Toxicol; 1981 Dec; 1(6):308-13. PubMed ID: 6764474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detoxification of benzidine-based azo dye by E. gallinarum: time-course study.
    Bafana A; Chakrabarti T; Muthal P; Kanade G
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):960-4. PubMed ID: 18206233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of mutagenicity of chemical substances by (quantitative) structure-activity relationship.
    Honma M
    Genes Environ; 2020; 42():23. PubMed ID: 32626544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of structure-activity relationship and artificial intelligence systems to improve in silico prediction of ames test mutagenicity.
    Mazzatorta P; Tran LA; Schilter B; Grigorov M
    J Chem Inf Model; 2007; 47(1):34-8. PubMed ID: 17238246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Q)SAR tools for priority setting: A case study with printed paper and board food contact material substances.
    Van Bossuyt M; Van Hoeck E; Raitano G; Manganelli S; Braeken E; Ates G; Vanhaecke T; Van Miert S; Benfenati E; Mertens B; Rogiers V
    Food Chem Toxicol; 2017 Apr; 102():109-119. PubMed ID: 28163056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of the Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes.
    Chung KT; Chen SC; Claxton LD
    Mutat Res; 2006 Jan; 612(1):58-76. PubMed ID: 16198141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mutagenicity studies of azo dyes and their reduction products in Salmonella typhimurium.
    Krishna G; Xu J; Nath J
    J Toxicol Environ Health; 1986; 18(1):111-9. PubMed ID: 3517355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel QSAR model of Salmonella mutagenicity and its application in the safety assessment of drug impurities.
    Valencia A; Prous J; Mora O; Sadrieh N; Valerio LG
    Toxicol Appl Pharmacol; 2013 Dec; 273(3):427-34. PubMed ID: 24090816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating computational methods to predict mutagenicity of aromatic azo compounds.
    Gadaleta D; Porta N; Vrontaki E; Manganelli S; Manganaro A; Sello G; Honma M; Benfenati E
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Oct; 35(4):239-257. PubMed ID: 29027864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.