These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24598115)

  • 1. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
    Fu M; Qian L; Long H; Wang K; Lu P; Rakovich YP; Hetsch F; Susha AS; Rogach AL
    Nanoscale; 2014 Aug; 6(15):9192-7. PubMed ID: 24981883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely confined gap surface-plasmon modes excited by electrons.
    Raza S; Stenger N; Pors A; Holmgaard T; Kadkhodazadeh S; Wagner JB; Pedersen K; Wubs M; Bozhevolnyi SI; Mortensen NA
    Nat Commun; 2014 Jun; 5():4125. PubMed ID: 24939641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrieving the electronic properties of silicon nanocrystals embedded in a dielectric matrix by low-loss EELS.
    Eljarrat A; López-Conesa L; López-Vidrier J; Hernández S; Garrido B; Magén C; Peiró F; Estradé S
    Nanoscale; 2014 Dec; 6(24):14971-83. PubMed ID: 25363292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic antennas hybridized with dielectric waveguides.
    Bernal Arango F; Kwadrin A; Koenderink AF
    ACS Nano; 2012 Nov; 6(11):10156-67. PubMed ID: 23066710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources.
    Cognée KG; Doeleman HM; Lalanne P; Koenderink AF
    Light Sci Appl; 2019; 8():115. PubMed ID: 31839935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of light from microdisk lasers into plasmonic nano-antennas.
    Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M
    Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps.
    Zhang M; Large N; Koh AL; Cao Y; Manjavacas A; Sinclair R; Nordlander P; Wang SX
    ACS Nano; 2015 Sep; 9(9):9331-9. PubMed ID: 26202803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy.
    Coenen T; Vesseur EJ; Polman A; Koenderink AF
    Nano Lett; 2011 Sep; 11(9):3779-84. PubMed ID: 21780758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Graphene-Supported Aluminum Plasmonics.
    Elibol K; van Aken PA
    ACS Nano; 2022 Aug; 16(8):11931-11943. PubMed ID: 35904978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance.
    Cinel NA; Bütün S; Özbay E
    Opt Express; 2012 Jan; 20(3):2587-97. PubMed ID: 22330497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schottky-contact plasmonic dipole rectenna concept for biosensing.
    Alavirad M; Mousavi SS; Roy L; Berini P
    Opt Express; 2013 Feb; 21(4):4328-47. PubMed ID: 23481966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the plasmonic near-field of gold nanocrescent antennas.
    Bukasov R; Ali TA; Nordlander P; Shumaker-Parry JS
    ACS Nano; 2010 Nov; 4(11):6639-50. PubMed ID: 21038885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation engineering of optical antennas for maximum field enhancement.
    Seok TJ; Jamshidi A; Kim M; Dhuey S; Lakhani A; Choo H; Schuck PJ; Cabrini S; Schwartzberg AM; Bokor J; Yablonovitch E; Wu MC
    Nano Lett; 2011 Jul; 11(7):2606-10. PubMed ID: 21648393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.