These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24598162)

  • 1. A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles.
    Walentek P; Bogusch S; Thumberger T; Vick P; Dubaissi E; Beyer T; Blum M; Schweickert A
    Development; 2014 Apr; 141(7):1526-33. PubMed ID: 24598162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin and MucXS release by small secretory cells depend on Xpod, a SSC specific marker gene.
    Kurrle Y; Kunesch K; Bogusch S; Schweickert A
    Genesis; 2020 Feb; 58(2):e23344. PubMed ID: 31705622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis.
    Dubaissi E; Rousseau K; Lea R; Soto X; Nardeosingh S; Schweickert A; Amaya E; Thornton DJ; Papalopulu N
    Development; 2014 Apr; 141(7):1514-25. PubMed ID: 24598166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia.
    Walentek P; Beyer T; Hagenlocher C; Müller C; Feistel K; Schweickert A; Harland RM; Blum M
    Dev Biol; 2015 Dec; 408(2):292-304. PubMed ID: 25848696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease.
    Dubaissi E; Papalopulu N
    Dis Model Mech; 2011 Mar; 4(2):179-92. PubMed ID: 21183475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMP signalling controls the construction of vertebrate mucociliary epithelia.
    Cibois M; Luxardi G; Chevalier B; Thomé V; Mercey O; Zaragosi LE; Barbry P; Pasini A; Marcet B; Kodjabachian L
    Development; 2015 Jul; 142(13):2352-63. PubMed ID: 26092849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis.
    Walentek P
    Methods Mol Biol; 2018; 1865():251-263. PubMed ID: 30151772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development.
    Hayes JM; Kim SK; Abitua PB; Park TJ; Herrington ER; Kitayama A; Grow MW; Ueno N; Wallingford JB
    Dev Biol; 2007 Dec; 312(1):115-30. PubMed ID: 17961536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar polarity in the ciliated epidermis of Xenopus embryos.
    König G; Hausen P
    Dev Biol; 1993 Dec; 160(2):355-68. PubMed ID: 8253269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A positive feedback mechanism governs the polarity and motion of motile cilia.
    Mitchell B; Jacobs R; Li J; Chien S; Kintner C
    Nature; 2007 May; 447(7140):97-101. PubMed ID: 17450123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis.
    Kim K; Lake BB; Haremaki T; Weinstein DC; Sokol SY
    Dev Dyn; 2012 Sep; 241(9):1385-95. PubMed ID: 22778024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cilia-driven transport in the airways in the absence of mucus.
    Bermbach S; Weinhold K; Roeder T; Petersen F; Kugler C; Goldmann T; Rupp J; König P
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):56-67. PubMed ID: 24467665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient mucociliary transport relies on efficient regulation of ciliary beating.
    Braiman A; Priel Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):202-7. PubMed ID: 18586580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia.
    Robinson AM; Takahashi S; Brotslaw EJ; Ahmad A; Ferrer E; Procissi D; Richter CP; Cheatham MA; Mitchell BJ; Zheng J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13571-13579. PubMed ID: 32482850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lrrcc1 and Ccdc61 are conserved effectors of multiciliated cell function.
    Nommick A; Boutin C; Rosnet O; Schirmer C; Bazellières E; Thomé V; Loiseau E; Viallat A; Kodjabachian L
    J Cell Sci; 2022 Feb; 135(4):. PubMed ID: 35067717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biology of multiciliated cells.
    Boutin C; Kodjabachian L
    Curr Opin Genet Dev; 2019 Jun; 56():1-7. PubMed ID: 31102978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of mucus secretion, ciliary activity, and transport in frog palate epithelium.
    Spungin B; Silberberg A
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C299-308. PubMed ID: 6496721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia.
    Walentek P
    Genesis; 2021 Feb; 59(1-2):e23406. PubMed ID: 33400364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of motility and mucociliary function of tracheal epithelial cilia.
    Fujisawa T; Tanaka Y; Ikegami K
    Methods Cell Biol; 2023; 176():159-180. PubMed ID: 37164536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ckb and Ybx2 interact with Ribc2 and are necessary for the ciliary beating of multi-cilia.
    Kwon KY; Jeong H; Jang DG; Kwon T; Park TJ
    Genes Genomics; 2023 Feb; 45(2):157-167. PubMed ID: 36508087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.