These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants. Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150 [TBL] [Abstract][Full Text] [Related]
3. The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining. Mansour WY; Borgmann K; Petersen C; Dikomey E; Dahm-Daphi J DNA Repair (Amst); 2013 Dec; 12(12):1134-42. PubMed ID: 24210699 [TBL] [Abstract][Full Text] [Related]
4. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Fouquin A; Guirouilh-Barbat J; Lopez B; Hall J; Amor-Guéret M; Pennaneach V Nucleic Acids Res; 2017 Dec; 45(21):12325-12339. PubMed ID: 29036662 [TBL] [Abstract][Full Text] [Related]
5. Regulation of DNA repair in the absence of classical non-homologous end joining. Kang YJ; Yan CT DNA Repair (Amst); 2018 Aug; 68():34-40. PubMed ID: 29929045 [TBL] [Abstract][Full Text] [Related]
6. Nuclear PTEN interferes with binding of Ku70 at double-strand breaks through post-translational poly(ADP-ribosyl)ation. Guan J; Zhao Q; Mao W Biochim Biophys Acta; 2016 Dec; 1863(12):3106-3115. PubMed ID: 27741411 [TBL] [Abstract][Full Text] [Related]
7. A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Ahrabi S; Sarkar S; Pfister SX; Pirovano G; Higgins GS; Porter AC; Humphrey TC Nucleic Acids Res; 2016 Jul; 44(12):5743-57. PubMed ID: 27131361 [TBL] [Abstract][Full Text] [Related]
8. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. Howard SM; Yanez DA; Stark JM PLoS Genet; 2015 Jan; 11(1):e1004943. PubMed ID: 25629353 [TBL] [Abstract][Full Text] [Related]
9. Regulation of DNA double-strand break repair pathway choice: a new focus on 53BP1. Zhang F; Gong Z J Zhejiang Univ Sci B; 2021 Jan; 22(1):38-46. PubMed ID: 33448186 [TBL] [Abstract][Full Text] [Related]
10. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Tsai LJ; Lopezcolorado FW; Bhargava R; Mendez-Dorantes C; Jahanshir E; Stark JM Nucleic Acids Res; 2020 Jun; 48(11):6032-6052. PubMed ID: 32427332 [TBL] [Abstract][Full Text] [Related]
11. BRCA1-Ku80 protein interaction enhances end-joining fidelity of chromosomal double-strand breaks in the G1 phase of the cell cycle. Jiang G; Plo I; Wang T; Rahman M; Cho JH; Yang E; Lopez BS; Xia F J Biol Chem; 2013 Mar; 288(13):8966-76. PubMed ID: 23344954 [TBL] [Abstract][Full Text] [Related]
12. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination. Cortizas EM; Zahn A; Hajjar ME; Patenaude AM; Di Noia JM; Verdun RE J Immunol; 2013 Dec; 191(11):5751-63. PubMed ID: 24146042 [TBL] [Abstract][Full Text] [Related]
13. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Wang M; Wu W; Wu W; Rosidi B; Zhang L; Wang H; Iliakis G Nucleic Acids Res; 2006; 34(21):6170-82. PubMed ID: 17088286 [TBL] [Abstract][Full Text] [Related]
14. CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair. Hilmi K; Jangal M; Marques M; Zhao T; Saad A; Zhang C; Luo VM; Syme A; Rejon C; Yu Z; Krum A; Fabian MR; Richard S; Alaoui-Jamali M; Orthwein A; McCaffrey L; Witcher M Sci Adv; 2017 May; 3(5):e1601898. PubMed ID: 28560323 [TBL] [Abstract][Full Text] [Related]
15. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. Badie S; Carlos AR; Folio C; Okamoto K; Bouwman P; Jonkers J; Tarsounas M EMBO J; 2015 Feb; 34(3):410-24. PubMed ID: 25582120 [TBL] [Abstract][Full Text] [Related]
16. Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. Tomimatsu N; Mukherjee B; Deland K; Kurimasa A; Bolderson E; Khanna KK; Burma S DNA Repair (Amst); 2012 Apr; 11(4):441-8. PubMed ID: 22326273 [TBL] [Abstract][Full Text] [Related]
17. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Xu G; Chapman JR; Brandsma I; Yuan J; Mistrik M; Bouwman P; Bartkova J; Gogola E; Warmerdam D; Barazas M; Jaspers JE; Watanabe K; Pieterse M; Kersbergen A; Sol W; Celie PHN; Schouten PC; van den Broek B; Salman A; Nieuwland M; de Rink I; de Ronde J; Jalink K; Boulton SJ; Chen J; van Gent DC; Bartek J; Jonkers J; Borst P; Rottenberg S Nature; 2015 May; 521(7553):541-544. PubMed ID: 25799992 [TBL] [Abstract][Full Text] [Related]
18. CHAMP1-POGZ counteracts the inhibitory effect of 53BP1 on homologous recombination and affects PARP inhibitor resistance. Fujita H; Ikeda M; Ui A; Ouchi Y; Mikami Y; Kanno SI; Yasui A; Tanaka K Oncogene; 2022 May; 41(19):2706-2718. PubMed ID: 35393543 [TBL] [Abstract][Full Text] [Related]
19. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Saberi A; Hochegger H; Szuts D; Lan L; Yasui A; Sale JE; Taniguchi Y; Murakawa Y; Zeng W; Yokomori K; Helleday T; Teraoka H; Arakawa H; Buerstedde JM; Takeda S Mol Cell Biol; 2007 Apr; 27(7):2562-71. PubMed ID: 17242200 [TBL] [Abstract][Full Text] [Related]
20. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Anglada T; Genescà A; Martín M Aging (Albany NY); 2020 Dec; 12(24):24872-24893. PubMed ID: 33361520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]