These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24598528)

  • 1. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex.
    Van Hooser SD; Escobar GM; Maffei A; Miller P
    J Neurophysiol; 2014 Jun; 111(11):2355-73. PubMed ID: 24598528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Acute Visual Experience on Development of LGN Receptive Fields in the Ferret.
    Stacy AK; Schneider NA; Gilman NK; Van Hooser SD
    J Neurosci; 2023 May; 43(19):3495-3508. PubMed ID: 37028934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal Circuitry Balances Contrast Tuning of Excitation and Inhibition to Enable Reliable Computation of Direction Selectivity.
    Poleg-Polsky A; Diamond JS
    J Neurosci; 2016 May; 36(21):5861-76. PubMed ID: 27225774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of cortical orientation selectivity in the absence of visual experience with contour.
    Ohshiro T; Hussain S; Weliky M
    J Neurophysiol; 2011 Oct; 106(4):1923-32. PubMed ID: 21753023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual Stimulus Speed Does Not Influence the Rapid Emergence of Direction Selectivity in Ferret Visual Cortex.
    Ritter NJ; Anderson NM; Van Hooser SD
    J Neurosci; 2017 Feb; 37(6):1557-1567. PubMed ID: 28069921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex.
    Priebe NJ; Ferster D
    Neuron; 2005 Jan; 45(1):133-45. PubMed ID: 15629708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
    McLelland D; Baker PM; Ahmed B; Kohn A; Bair W
    J Neurosci; 2015 Jul; 35(28):10268-80. PubMed ID: 26180202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity.
    Eguchi A; Neymotin SA; Stringer SM
    Front Neural Circuits; 2014; 8():16. PubMed ID: 24659956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical amplification models of experience-dependent development of selective columns and response sparsification.
    Christie IK; Miller P; Van Hooser SD
    J Neurophysiol; 2017 Aug; 118(2):874-893. PubMed ID: 28515285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling.
    Tschetter WW; Govindaiah G; Etherington IM; Guido W; Niell CM
    J Neurosci; 2018 May; 38(19):4531-4542. PubMed ID: 29661964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion detection and prediction through spike-timing dependent plasticity.
    Shon AP; Rao RP; Sejnowski TJ
    Network; 2004 Aug; 15(3):179-98. PubMed ID: 15468734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model for the Origin of Motion Direction Selectivity in Visual Cortex.
    Freeman AW
    J Neurosci; 2021 Jan; 41(1):89-102. PubMed ID: 33203740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex.
    Wilson DE; Scholl B; Fitzpatrick D
    Nature; 2018 Aug; 560(7716):97-101. PubMed ID: 30046106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model circuit of spiking neurons generating directional selectivity in simple cells.
    Maex R; Orban GA
    J Neurophysiol; 1996 Apr; 75(4):1515-45. PubMed ID: 8727395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic and intrinsic mechanisms underlying development of cortical direction selectivity.
    Roy A; Osik JJ; Meschede-Krasa B; Alford WT; Leman DP; Van Hooser SD
    Elife; 2020 Jul; 9():. PubMed ID: 32701059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theory of the influence of eye movements on the refinement of direction selectivity in the cat's primary visual cortex.
    Casile A; Rucci M
    Network; 2009; 20(4):197-232. PubMed ID: 19919281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-based synaptic plasticity and the emergence of direction selective simple cells: mathematical analysis.
    Senn W; Buchs NJ
    J Comput Neurosci; 2003; 14(2):119-38. PubMed ID: 12567013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An architectural hypothesis for direction selectivity in the visual cortex: the role of spatially asymmetric intracortical inhibition.
    Sabatini SP; Solari F
    Biol Cybern; 1999 Mar; 80(3):171-83. PubMed ID: 10192900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.