These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 24598863)

  • 1. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe.
    Liu J; Han J; Kang Z; Golamaully R; Xu N; Li H; Han X
    Nanoscale; 2014 Jun; 6(11):5770-6. PubMed ID: 24736832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.
    Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J
    ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of urchin-like LaWO
    Sun L; Shi Y; Tang M; Wang D; Tian Y; Li J
    Nanoscale; 2019 Aug; 11(30):14237-14241. PubMed ID: 31317999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEGylated (NH
    Macharia DK; Tian Q; Chen L; Sun Y; Yu N; He C; Wang H; Chen Z
    J Photochem Photobiol B; 2017 Sep; 174():10-17. PubMed ID: 28750318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy.
    Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY
    J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption.
    Guo C; Yin S; Yu H; Liu S; Dong Q; Goto T; Zhang Z; Li Y; Sato T
    Nanoscale; 2013 Jul; 5(14):6469-78. PubMed ID: 23743996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of PEGylated plasmonic MoO(3-x) hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer.
    Bao T; Yin W; Zheng X; Zhang X; Yu J; Dong X; Yong Y; Gao F; Yan L; Gu Z; Zhao Y
    Biomaterials; 2016 Jan; 76():11-24. PubMed ID: 26517561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy.
    Tian Y; Yi W; Bai L; Zhang P; Si J; Hou X; Deng Y; Hou J
    Int J Biol Macromol; 2019 Sep; 137():904-911. PubMed ID: 31252011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.
    Zhang Y; Li B; Cao Y; Qin J; Peng Z; Xiao Z; Huang X; Zou R; Hu J
    Dalton Trans; 2015 Feb; 44(6):2771-9. PubMed ID: 25468402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the NIR photoabsorption of CuWO
    Wen M; Wang S; Jiang R; Wang Y; Wang Z; Yu W; Geng P; Xia J; Li M; Chen Z
    Biomater Sci; 2019 Nov; 7(11):4651-4660. PubMed ID: 31464303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Bi
    Wang S; Wang H; Song C; Li Z; Wang Z; Xu H; Yu W; Peng C; Li M; Chen Z
    Nanoscale; 2019 Aug; 11(32):15326-15338. PubMed ID: 31386732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.
    Xiao JW; Fan SX; Wang F; Sun LD; Zheng XY; Yan CH
    Nanoscale; 2014 Apr; 6(8):4345-51. PubMed ID: 24622916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy.
    Huang Y; Lai Y; Shi S; Hao S; Wei J; Chen X
    Chem Asian J; 2015 Feb; 10(2):370-6. PubMed ID: 25425287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy.
    Li W; Rong P; Yang K; Huang P; Sun K; Chen X
    Biomaterials; 2015 Mar; 45():18-26. PubMed ID: 25662491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol).
    Wolcott A; Kuykendall TR; Chen W; Chen S; Zhang JZ
    J Phys Chem B; 2006 Dec; 110(50):25288-96. PubMed ID: 17165974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy.
    Liu Z; Cheng L; Zhang L; Yang Z; Liu Z; Fang J
    Biomaterials; 2014 Apr; 35(13):4099-107. PubMed ID: 24518389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of optical imaging and therapy using nanosized graphene and graphene oxide.
    Li JL; Tang B; Yuan B; Sun L; Wang XG
    Biomaterials; 2013 Dec; 34(37):9519-34. PubMed ID: 24034502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical WO
    Zhang D; Liu R; Ji S; Cai Y; Liang C; Li Z
    ACS Appl Mater Interfaces; 2022 Apr; ():. PubMed ID: 35484908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.