These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24599153)

  • 1. Avalanche correlations in the martensitic transition of a Cu-Zn-Al shape memory alloy: analysis of acoustic emission and calorimetry.
    Baró J; Martín-Olalla JM; Romero FJ; Gallardo MC; Salje EK; Vives E; Planes A
    J Phys Condens Matter; 2014 Mar; 26(12):125401. PubMed ID: 24599153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of the influence of the anodic potential on metal-components dissolution from dental alloys].
    Kobayashi H
    Shikwa Gakuho; 1989 Nov; 89(11):1679-97. PubMed ID: 2488976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion behavior of Cu and the Cu-Zn-Al shape memory alloy in simulated uterine fluid.
    Chen B; Liang C; Fu D; Ren D
    Contraception; 2005 Sep; 72(3):221-4. PubMed ID: 16102560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avalanche criticality in thermal-driven martensitic transitions: the asymmetry of the forward and reverse transitions in shape-memory materials.
    Planes A; Vives E
    J Phys Condens Matter; 2017 Aug; 29(33):334001. PubMed ID: 28604365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.
    Koike M; Hummel SK; Ball JD; Okabe T
    J Prosthet Dent; 2012 Jun; 107(6):393-9. PubMed ID: 22633596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.
    Liu L; Ding X; Li J; Lookman T; Sun J
    Nanoscale; 2014 Feb; 6(4):2067-72. PubMed ID: 24384687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static immersion and irritation tests of dental metal-ceramic alloys.
    Ardlin BI; Dahl JE; Tibballs JE
    Eur J Oral Sci; 2005 Feb; 113(1):83-9. PubMed ID: 15693834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape Memory Micro- and Nanowire Libraries for the High-Throughput Investigation of Scaling Effects.
    Oellers T; König D; Kostka A; Xie S; Brugger J; Ludwig A
    ACS Comb Sci; 2017 Sep; 19(9):574-584. PubMed ID: 28759201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
    Paiva J; Givan DA; Broome JC; Lemons JE; McCracken MS
    J Prosthodont; 2009 Dec; 18(8):656-62. PubMed ID: 19682220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mould filling of Ag-Pd-Cu-Au and Ag-Zn-Sn-In alloy castings made using a rapidly prepared gypsum-bonded investment material.
    Shimizu H; Inoue S; Miyauchi H; Watanabe K; Takahashi Y
    Eur J Prosthodont Restor Dent; 2008 Dec; 16(4):177-80. PubMed ID: 19177729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elements released from dental casting alloys and their cytotoxic effects.
    al-Hiyasat AS; Bashabsheh OM; Darmani H
    Int J Prosthodont; 2002; 15(5):473-8. PubMed ID: 12375463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution transmission electron microscopy of age-hardenable Au-Cu-Zn alloys for dental applications.
    Seol HJ; Shiraishi T; Tanaka Y; Miura E; Hisatsune K
    Biomaterials; 2003 May; 24(12):2061-6. PubMed ID: 12628826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on elastic recoil and restoration of vessel pulsatility of Zn-Cu biodegradable coronary stents.
    Zhou C; Feng X; Shi Z; Song C; Cui X; Zhang J; Li T; Toft ES; Ge J; Wang L; Zhang H
    Biomed Tech (Berl); 2020 Apr; 65(2):219-227. PubMed ID: 31527289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelastic assessment of the expansion of direct-placement gallium restorative alloys.
    Osborne JW
    Quintessence Int; 1999 Mar; 30(3):185-91. PubMed ID: 10356572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
    Kikuchi M; Takahashi M; Okuno O
    Dent Mater; 2006 Jul; 22(7):641-6. PubMed ID: 16221490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.
    Benatti OF; Miranda WG; Muench A
    J Prosthet Dent; 2000 Sep; 84(3):360-3. PubMed ID: 11005911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of dental gallium alloys.
    Herø H; Simensen CJ; Jørgensen RB
    Biomaterials; 1996 Jul; 17(13):1321-6. PubMed ID: 8805980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of zinc on strength and fatigue resistance of amalgam.
    Watkins JH; Nakajima H; Hanaoka K; Zhao L; Iwamoto T; Okabe T
    Dent Mater; 1995 Jan; 11(1):24-33. PubMed ID: 7498605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.