These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 24599555)
21. Impact of a tarsonemid prey mite and its fungal diet on the reproductive performance of a predatory mite. Vangansbeke D; Duarte MVA; Merckx J; Benavente A; Magowski WL; França SC; Bolckmans K; Wäckers FL Exp Appl Acarol; 2021 Mar; 83(3):313-323. PubMed ID: 33590357 [TBL] [Abstract][Full Text] [Related]
22. Performance of a pyrethroid-resistant strain of the predator mite Typhlodromus pyri (Acari: Phytoseiidae) under different insecticide regimes. Hardman JM; Moreau DL; Snyder M; Gaul SO; Bent ED J Econ Entomol; 2000 Jun; 93(3):590-604. PubMed ID: 10902304 [TBL] [Abstract][Full Text] [Related]
23. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets. Puchalska EK; Kozak M Exp Appl Acarol; 2016 Jan; 68(1):39-53. PubMed ID: 26530991 [TBL] [Abstract][Full Text] [Related]
24. Diapause incidence in the two-spotted spider mite increases due to predator presence, not due to selective predation. Kroon A; Veenendaal RL; Egas M; Bruin J; Sabelis MW Exp Appl Acarol; 2005; 35(1-2):73-81. PubMed ID: 15777002 [TBL] [Abstract][Full Text] [Related]
25. Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Lorenzon M; Pozzebon A; Duso C Exp Appl Acarol; 2012 Nov; 58(3):259-78. PubMed ID: 22836719 [TBL] [Abstract][Full Text] [Related]
26. Prey Preference and Life Table of Amblyseius orientalis on Bemisia tabaci and Tetranychus cinnabarinus. Zhang X; Lv J; Hu Y; Wang B; Chen X; Xu X; Wang E PLoS One; 2015; 10(10):e0138820. PubMed ID: 26436422 [TBL] [Abstract][Full Text] [Related]
27. The impact of different photoperiod regimes on vital life traits of Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Yazdanpanah S; Fathipour Y Exp Appl Acarol; 2024 Oct; 93(3):597-608. PubMed ID: 39088131 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of the predacious mite Hemicheyletia wellsina (Acari: Cheyletidae) as a predator of arthropod pests of orchids. Ray HA; Hoy MA Exp Appl Acarol; 2014 Nov; 64(3):287-98. PubMed ID: 25033767 [TBL] [Abstract][Full Text] [Related]
29. Influence of prey on developmental performance, reproduction and prey consumption of Neoseiulus californicus (Acari: Phytoseiidae). Gotoh T; Tsuchiya A; Kitashima Y Exp Appl Acarol; 2006; 40(3-4):189-204. PubMed ID: 17120083 [TBL] [Abstract][Full Text] [Related]
30. Sublethal effects of esfenvalerate residues on pyrethroid resistant Typhlodromus pyri (Acari: Phytoseiidae) and its prey Panonychus ulmi and Tetranychus urticae (Acari: Tetranychidae). Bowi MH; Worner SP; Krips OE; Penman DR Exp Appl Acarol; 2001; 25(4):311-9. PubMed ID: 11603738 [TBL] [Abstract][Full Text] [Related]
32. Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in Oregon vineyards. Gadino AN; Walton VM Exp Appl Acarol; 2012 Sep; 58(1):1-10. PubMed ID: 22527839 [TBL] [Abstract][Full Text] [Related]
33. Biological control of spider mites on grape by phytoseiid mites (Acari: Tetranychidae, Phytoseiidae): emphasis on regional aspects. Prischmann DA; Croft BA; Luh HK J Econ Entomol; 2002 Apr; 95(2):340-7. PubMed ID: 12020011 [TBL] [Abstract][Full Text] [Related]
34. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize. Guo YY; Tian JC; Shi WP; Dong XH; Romeis J; Naranjo SE; Hellmich RL; Shelton AM Transgenic Res; 2016 Feb; 25(1):33-44. PubMed ID: 26545599 [TBL] [Abstract][Full Text] [Related]
35. Releases of insectary-reared Galendromus occidentalis (Acari: Phytoseiidae) in commercial apple orchards. Schmidt RA; Beers EH; Unruh TR; Horton DR J Econ Entomol; 2013 Oct; 106(5):1996-2005. PubMed ID: 24224240 [TBL] [Abstract][Full Text] [Related]
36. Leaf pubescence and two-spotted spider mite webbing influence phytoseiid behavior and population density. Roda A; Nyrop J; English-Loeb G; Dicke M Oecologia; 2001 Dec; 129(4):551-560. PubMed ID: 24577695 [TBL] [Abstract][Full Text] [Related]
37. Comparative study on biological parameters of Bemisia tabaci (Genn.) collected on four host plants from Varamin-Iran. Samih MA Commun Agric Appl Biol Sci; 2005; 70(4):663-70. PubMed ID: 16628901 [TBL] [Abstract][Full Text] [Related]
38. Tomato Cultivars Resistant or Susceptible to Spider Mites Differ in Their Biosynthesis and Metabolic Profile of the Monoterpenoid Pathway. Weinblum N; Cna'ani A; Yaakov B; Sadeh A; Avraham L; Opatovsky I; Tzin V Front Plant Sci; 2021; 12():630155. PubMed ID: 33719301 [TBL] [Abstract][Full Text] [Related]
39. Effects of fungicide residues on the survival, fecundity, and predation of the mites Tetranychus urticae (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae). Alston DG; Thomson SV J Econ Entomol; 2004 Jun; 97(3):950-6. PubMed ID: 15279277 [TBL] [Abstract][Full Text] [Related]
40. Life history of the predatory mite Phytoseiulus fragariae on Tetranychus evansi and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) at five temperatures. de Vasconcelos GJ; de Moraes GJ; Júnior ID; Knapp M Exp Appl Acarol; 2008 Jan; 44(1):27-36. PubMed ID: 18058026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]