BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2459990)

  • 1. The early development of subcortical projections to presumptive somatic sensory-motor areas of neocortex in the North American opossum.
    Martin GF; Cabana T; Ho RH
    Anat Embryol (Berl); 1988; 178(4):365-79. PubMed ID: 2459990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of brainstem and cerebellar projections to the diencephalon with notes on thalamocortical projections: studies in the North American opossum.
    Martin GF; Cabana T; Hazlett JC; Ho R; Waltzer R
    J Comp Neurol; 1987 Jun; 260(2):186-200. PubMed ID: 3038968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of projections from somatic motor-sensory areas of neocortex to the diencephalon and brainstem in the North American opossum.
    Cabana T; Martin GF
    J Comp Neurol; 1986 Sep; 251(4):506-16. PubMed ID: 2431011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of commissural connections of somatic motor-sensory areas of neocortex in the North American opossum.
    Cabana T; Martin GF
    Anat Embryol (Berl); 1985; 171(1):121-8. PubMed ID: 3838629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The early development of major projections to the dorsal striatum in the North American opossum.
    Martin GF; Ho RH; Hazlett JC
    Brain Res Dev Brain Res; 1989 Jun; 47(2):161-70. PubMed ID: 2472908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Wang XM; Xu XM; Qin YQ; Martin GF
    Brain Res Dev Brain Res; 1992 Aug; 68(2):203-16. PubMed ID: 1382891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental sequence in the origin of descending spinal pathways. Studies using retrograde transport techniques in the North American opossum (Didelphis virginiana).
    Cabana T; Martin GF
    Brain Res; 1984 Aug; 317(2):247-63. PubMed ID: 6478250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1989 Jan; 279(3):368-81. PubMed ID: 2465321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Qin YQ; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of rubrospinal, cerebellorubral, and corticorubral connections in the North American opossum. Evidence for asynchronism.
    Martin GF; Cabana T; Hazlet JC
    Neurochem Pathol; 1986 Dec; 5(3):221-36. PubMed ID: 2442682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticospinal development in the North-American opossum: evidence for a sequence in the growth of cortical axons in the spinal cord and for transient projections.
    Cabana T; Martin GF
    Brain Res; 1985 Nov; 355(1):69-80. PubMed ID: 4075107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of forebrain projections from the medullary reticular formation in the North American opossum. Evidence for connectional heterogeneity.
    Waltzer R; Martin GF
    Brain Behav Evol; 1988; 31(2):57-81. PubMed ID: 2450621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP.
    Martin GF; Cabana T
    Brain Res; 1985 Jun; 337(1):188-92. PubMed ID: 3839153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of extensive brainstem projections to medial and lateral thalamus and hypothalamus in the rat.
    Carstens E; Leah J; Lechner J; Zimmermann M
    Neuroscience; 1990; 35(3):609-26. PubMed ID: 1696363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten.
    Dehay C; Kennedy H; Bullier J
    J Comp Neurol; 1988 Jun; 272(1):68-89. PubMed ID: 2454978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonergic innervation of the forebrain in the North American opossum.
    Martin GF; DeLorenzo G; Ho RH; Humbertson AO; Waltzer R
    Brain Behav Evol; 1985; 26(3-4):196-228. PubMed ID: 3910165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early development and developmental plasticity of the fasciculus gracilis in the North American opossum (Didelphis virginiana).
    Wang XM; Qin YQ; Terman JR; Martin GF
    Brain Res Dev Brain Res; 1997 Feb; 98(2):151-63. PubMed ID: 9051256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys.
    Parent A; Paré D; Smith Y; Steriade M
    J Comp Neurol; 1988 Nov; 277(2):281-301. PubMed ID: 2466060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholaminergic innervation of the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    Brain Behav Evol; 1988; 32(5):281-92. PubMed ID: 2906810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.