These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 24600016)
1. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Wu J; Xu Z; Zhang Y; Chai L; Yi H; Deng X J Exp Bot; 2014 Apr; 65(6):1651-71. PubMed ID: 24600016 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and weighted gene co-expression network analyses reveal key genes and pathways involved in early fruit ripening in Citrus sinensis. Chen J; Xie L; Lin Y; Zhong B; Wan S BMC Genomics; 2024 Jul; 25(1):735. PubMed ID: 39080567 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. Zhang YJ; Wang XJ; Wu JX; Chen SY; Chen H; Chai LJ; Yi HL PLoS One; 2014; 9(12):e116056. PubMed ID: 25551568 [TBL] [Abstract][Full Text] [Related]
4. Comparative Transcriptome and sRNAome Analyses Reveal the Regulatory Mechanisms of Fruit Ripening in a Spontaneous Early-Ripening Navel Orange Mutant and Its Wild Type. Mi L; Ma D; Lv S; Xu S; Zhong B; Peng T; Liu D; Liu Y Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292591 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). Yu K; Xu Q; Da X; Guo F; Ding Y; Deng X BMC Genomics; 2012 Jan; 13():10. PubMed ID: 22230690 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type. Wu J; Fu L; Yi H PLoS One; 2016; 11(4):e0154330. PubMed ID: 27104786 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening. Wang JH; Liu JJ; Chen KL; Li HW; He J; Guan B; He L BMC Genomics; 2017 Dec; 18(1):984. PubMed ID: 29268697 [TBL] [Abstract][Full Text] [Related]
8. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. Romero P; Lafuente MT; Rodrigo MJ J Exp Bot; 2012 Aug; 63(13):4931-45. PubMed ID: 22888124 [TBL] [Abstract][Full Text] [Related]
9. Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage. Liu Y; Liu Q; Xiong J; Deng X Sci China C Life Sci; 2007 Aug; 50(4):511-7. PubMed ID: 17653673 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. Liu Q; Zhu A; Chai L; Zhou W; Yu K; Ding J; Xu J; Deng X J Exp Bot; 2009; 60(3):801-13. PubMed ID: 19218315 [TBL] [Abstract][Full Text] [Related]
11. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. Romero P; Rodrigo MJ; Alférez F; Ballester AR; González-Candelas L; Zacarías L; Lafuente MT J Exp Bot; 2012 Apr; 63(7):2753-67. PubMed ID: 22315241 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening. Gu T; Jia S; Huang X; Wang L; Fu W; Huo G; Gan L; Ding J; Li Y Planta; 2019 Jul; 250(1):145-162. PubMed ID: 30949762 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. Ma Q; Ding Y; Chang J; Sun X; Zhang L; Wei Q; Cheng Y; Chen L; Xu J; Deng X J Exp Bot; 2014 Jan; 65(1):61-74. PubMed ID: 24215076 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic analysis reveals key factors in fruit ripening and rubbery texture caused by 1-MCP in papaya. Zhu X; Ye L; Ding X; Gao Q; Xiao S; Tan Q; Huang J; Chen W; Li X BMC Plant Biol; 2019 Jul; 19(1):309. PubMed ID: 31299898 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Alós E; Roca M; Iglesias DJ; Mínguez-Mosquera MI; Damasceno CM; Thannhauser TW; Rose JK; Talón M; Cercós M Plant Physiol; 2008 Jul; 147(3):1300-15. PubMed ID: 18467459 [TBL] [Abstract][Full Text] [Related]
16. MicroRNAs and Transcripts Associated with an Early Ripening Mutant of Pomelo ( Pan H; Lyu S; Chen Y; Xu S; Ye J; Chen G; Wu S; Li X; Chen J; Pan D Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502256 [TBL] [Abstract][Full Text] [Related]
17. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Feng G; Wu J; Xu Y; Lu L; Yi H Plant Biotechnol J; 2021 Jul; 19(7):1337-1353. PubMed ID: 33471410 [TBL] [Abstract][Full Text] [Related]
18. Transcript analyses reveal a comprehensive role of abscisic acid in modulating fruit ripening in Chinese jujube. Zhang Z; Kang C; Zhang S; Li X BMC Plant Biol; 2019 May; 19(1):189. PubMed ID: 31068143 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
20. Comparative Analysis of miRNAs and Their Target Transcripts between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild-Type Using Small RNA and Degradome Sequencing. Wu J; Zheng S; Feng G; Yi H Front Plant Sci; 2016; 7():1416. PubMed ID: 27708662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]