These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24600021)

  • 21. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species.
    Bräutigam A; Schliesky S; Külahoglu C; Osborne CP; Weber AP
    J Exp Bot; 2014 Jul; 65(13):3579-93. PubMed ID: 24642845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Developmental Enhancement of a C
    Liu Y; Maimaitijiang T; Zhang J; Ma Y; Lan H
    Front Plant Sci; 2020; 11():152. PubMed ID: 32210984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition from C
    Yorimitsu Y; Kadosono A; Hatakeyama Y; Yabiku T; Ueno O
    J Plant Res; 2019 Nov; 132(6):839-855. PubMed ID: 31473860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.
    Pinto H; Sharwood RE; Tissue DT; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3669-81. PubMed ID: 24723409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diversity in forms of C4 in the genus Cleome (Cleomaceae).
    Koteyeva NK; Voznesenskaya EV; Roalson EH; Edwards GE
    Ann Bot; 2011 Feb; 107(2):269-83. PubMed ID: 21147832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C
    DiMario RJ; Kophs AN; Pathare VS; Schnable JC; Cousins AB
    Plant J; 2021 Mar; 105(6):1677-1688. PubMed ID: 33345397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress.
    Liu X; Li X; Zhang C; Dai C; Zhou J; Ren C; Zhang J
    Physiol Plant; 2017 Feb; 159(2):178-200. PubMed ID: 27592839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shared origins of a key enzyme during the evolution of C4 and CAM metabolism.
    Christin PA; Arakaki M; Osborne CP; Bräutigam A; Sage RF; Hibberd JM; Kelly S; Covshoff S; Wong GK; Hancock L; Edwards EJ
    J Exp Bot; 2014 Jul; 65(13):3609-21. PubMed ID: 24638902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt stress induces Kranz anatomy and expression of C
    Takao K; Shirakura H; Hatakeyama Y; Ueno O
    Photosynth Res; 2022 Aug; 153(1-2):93-102. PubMed ID: 35352232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
    Koteyeva NK; Voznesenskaya EV; Edwards GE
    Plant Sci; 2015 Jun; 235():70-80. PubMed ID: 25900567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice).
    Matsuoka M; Kyozuka J; Shimamoto K; Kano-Murakami Y
    Plant J; 1994 Sep; 6(3):311-9. PubMed ID: 7920719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flowers of Bienertia cycloptera and Suaeda aralocaspica (Chenopodiaceae) complete the life cycle performing single-cell C
    Boyd CN; Franceschi VR; Chuong SDX; Akhani H; Kiirats O; Smith M; Edwards GE
    Funct Plant Biol; 2007 May; 34(4):268-281. PubMed ID: 32689353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the allosteric site for neutral amino acids in the maize C
    González-Segura L; Mújica-Jiménez C; Juárez-Díaz JA; Güémez-Toro R; Martinez-Castilla LP; Muñoz-Clares RA
    J Biol Chem; 2018 Jun; 293(26):9945-9957. PubMed ID: 29743237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into Regulation of C
    Siadjeu C; Lauterbach M; Kadereit G
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830004
    [No Abstract]   [Full Text] [Related]  

  • 36. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
    Christin PA; Salamin N; Savolainen V; Duvall MR; Besnard G
    Curr Biol; 2007 Jul; 17(14):1241-7. PubMed ID: 17614282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae): implications for the evolution of crassulacean acid metabolism.
    Silvera K; Winter K; Rodriguez BL; Albion RL; Cushman JC
    J Exp Bot; 2014 Jul; 65(13):3623-36. PubMed ID: 24913627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One decade after the discovery of single-cell C4 species in terrestrial plants: what did we learn about the minimal requirements of C4 photosynthesis?
    Sharpe RM; Offermann S
    Photosynth Res; 2014 Feb; 119(1-2):169-80. PubMed ID: 23494362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of the strictly conserved, C-terminal glycine residue in phosphoenolpyruvate carboxylase for overall catalysis: mutagenesis and truncation of GLY-961 in the sorghum C4 leaf isoform.
    Xu W; Ahmed S; Moriyama H; Chollet R
    J Biol Chem; 2006 Jun; 281(25):17238-17245. PubMed ID: 16624802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics.
    Muñoz-Clares RA; González-Segura L; Juárez-Díaz JA; Mújica-Jiménez C
    Biochem J; 2020 Jun; 477(11):2095-2114. PubMed ID: 32459324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.