These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 24600043)

  • 1. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.
    White AK; Metcalf WW
    J Bacteriol; 2004 Jul; 186(14):4730-9. PubMed ID: 15231805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source.
    Gama SR; Vogt M; Kalina T; Hupp K; Hammerschmidt F; Pallitsch K; Zechel DL
    ACS Chem Biol; 2019 Apr; 14(4):735-741. PubMed ID: 30810303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway.
    Hove-Jensen B; McSorley FR; Zechel DL
    J Am Chem Soc; 2011 Mar; 133(10):3617-24. PubMed ID: 21341651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B.
    Chen CM; Ye QZ; Zhu ZM; Wanner BL; Walsh CT
    J Biol Chem; 1990 Mar; 265(8):4461-71. PubMed ID: 2155230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei.
    PeƱaloza-Vazquez A; Mena GL; Herrera-Estrella L; Bailey AM
    Appl Environ Microbiol; 1995 Feb; 61(2):538-43. PubMed ID: 7574593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyphosate catabolism by Pseudomonas sp. strain PG2982.
    Shinabarger DL; Braymer HD
    J Bacteriol; 1986 Nov; 168(2):702-7. PubMed ID: 2430939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent substrate for carbon-phosphorus lyase: towards the pathway for organophosphonate metabolism in bacteria.
    He SM; Luo Y; Hove-Jensen B; Zechel DL
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5954-7. PubMed ID: 19733071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli.
    Hove-Jensen B; Rosenkrantz TJ; Zechel DL; Willemoƫs M
    J Bacteriol; 2010 Jan; 192(1):370-4. PubMed ID: 19854894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of glyphosate in an Arthrobacter sp. GLP-1.
    Pipke R; Amrhein N; Jacob GS; Schaefer J; Kishore GM
    Eur J Biochem; 1987 Jun; 165(2):267-73. PubMed ID: 2439330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate.
    Kishore GM; Jacob GS
    J Biol Chem; 1987 Sep; 262(25):12164-8. PubMed ID: 2442160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of carbon-phosphorus bond-cleavage enzyme from glyphosate degrading Pseudomonas putida T5.
    Selvi AA; Manonmani HK
    Prep Biochem Biotechnol; 2015; 45(4):380-97. PubMed ID: 24840030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology.
    Shushkova TV; Vinokurova NG; Baskunov BP; Zelenkova NF; Sviridov AV; Ermakova IT; Leontievsky AA
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):847-55. PubMed ID: 26521241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.