These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 24600141)
21. Frozen Red Blood Cells in Transfusion. Chaudhari CN Med J Armed Forces India; 2009 Jan; 65(1):55-8. PubMed ID: 27408192 [TBL] [Abstract][Full Text] [Related]
22. The survival, function, and hemolysis of human RBCs stored at 4 degrees C in additive solution (AS-1, AS-3, or AS-5) for 42 days and then biochemically modified, frozen, thawed, washed, and stored at 4 degrees C in sodium chloride and glucose solution for 24 hours. Valeri CR; Pivacek LE; Cassidy GP; Ragno G Transfusion; 2000 Nov; 40(11):1341-5. PubMed ID: 11099662 [TBL] [Abstract][Full Text] [Related]
23. The effect of two additive solutions on the postthaw storage of RBCs. Hess JR; Hill HR; Oliver CK; Lippert LE; Greenwalt TJ Transfusion; 2001 Jul; 41(7):923-7. PubMed ID: 11452161 [TBL] [Abstract][Full Text] [Related]
24. [Usefulness of frozen-thawed-deglycerolized red blood cells as quality control materials for red blood cell deformability test]. Kim YK; Won DI; Kim HO; Shin S; Suh JS Korean J Lab Med; 2010 Dec; 30(6):697-701. PubMed ID: 21157158 [TBL] [Abstract][Full Text] [Related]
25. Quality evaluation of frozen apheresis red blood cell storage with 21-day postthaw storage in additive solution 3 and saline-adenine-glucose-mannitol: biochemical and chromium-51 recovery measures. Bohonek M; Petrás M; Turek I; Urbanová J; Hrádek T; Chmátal P; Staroprazská V; Kostírová J; Horcicková D; Duchková S; Svobodová J; Tejcková E Transfusion; 2010 May; 50(5):1007-13. PubMed ID: 20051061 [TBL] [Abstract][Full Text] [Related]
26. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years. Valeri CR; Ragno G; Pivacek LE; Cassidy GP; Srey R; Hansson-Wicher M; Leavy ME Vox Sang; 2000; 79(3):168-74. PubMed ID: 11111236 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the programmed freezer method and deep freezer method in the manufacturing of frozen red blood cell products. Fuchizaki A; Yasui K; Tanaka M; Mitsuhashi H; Shimogaki K; Kimura T; Takihara Y; Hirayama F Vox Sang; 2022 Jun; 117(6):812-821. PubMed ID: 35262934 [TBL] [Abstract][Full Text] [Related]
28. Cryopreserved red blood cells for pediatric transfusion. Frozen storage of small aliquots in polyvinyl chloride (PVC) plastic bags. Valeri CR; Valeri DA; Gray A; Melaragno AJ; Vecchione JJ; Dennis RC; Emerson CP Transfusion; 1981; 21(5):527-36. PubMed ID: 7292581 [TBL] [Abstract][Full Text] [Related]
29. Simplification of the methods for adding and removing glycerol during freeze-preservation of human red blood cells with the high or low glycerol methods: biochemical modification prior to freezing. Valeri CR Transfusion; 1975; 15(3):195-218. PubMed ID: 1129830 [TBL] [Abstract][Full Text] [Related]
30. Development and use of pediatric frozen red cell packs. Staples JW; Fritz GE Transfusion; 1976; 16(6):566-70. PubMed ID: 996919 [TBL] [Abstract][Full Text] [Related]
31. Cryopreservation of Rh negative blood for improved storage & utilisation by means of indigenous freezing bags & solutions & manual deglycerolisation. Nanu A; Lal M Indian J Med Res; 2001 Apr; 113():151-5. PubMed ID: 11558324 [TBL] [Abstract][Full Text] [Related]
32. Comparison of methods to wash liquid-stored red blood cells and red blood cells frozen with high or low concentrations of glycerol. Contreras TJ; Valeri CR Transfusion; 1976; 16(6):539-65. PubMed ID: 11575 [TBL] [Abstract][Full Text] [Related]
33. Shipment of Glycerolized RBC Segments for Red Cell Concentrate Compatibility Testing. Olafson C; Ison T; Pote C; William N; Patel P; Clarke G; Acker JP Biopreserv Biobank; 2024 Sep; ():. PubMed ID: 39253850 [No Abstract] [Full Text] [Related]
34. Salvaging of liquid-preserved O-positive and O-negative red blood cells by rejuvenation and freezing. Ragno G; Robert Valeri C Transfus Apher Sci; 2006 Oct; 35(2):137-43. PubMed ID: 17035090 [TBL] [Abstract][Full Text] [Related]
35. Cryopreserving and deglycerolizing sickle cell trait red blood cell components using an automated cell-processing system. Ackley RJ; Lee-Stroka AH; Bryant BJ; Stroncek DF; Byrne KM Immunohematology; 2008; 24(3):107-12. PubMed ID: 19845078 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo measurements of human RBCs frozen with glycerol and subjected to various storage temperatures before deglycerolization and storage at 4 degrees C for 3 days. Valeri CR; Pivacek LE; Cassidy GP; Ragno G Transfusion; 2001 Mar; 41(3):401-5. PubMed ID: 11274598 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of a large-scale frozen blood program. Szymanski IO; Carrington EJ Transfusion; 1977; 17(5):431-7. PubMed ID: 910259 [TBL] [Abstract][Full Text] [Related]
38. Red cell hemolysis during processing and storage. Sawant RB; Jathar SK; Rajadhyaksha SB; Kadam PT Asian J Transfus Sci; 2007 Jul; 1(2):47-51. PubMed ID: 21938232 [TBL] [Abstract][Full Text] [Related]
39. Use of supernatant refractive index and supernatant hemoglobin concentration to assess residual glycerol concentration in cryopreserved red blood cells. Wong KA; Nsier N; Acker JP Clin Chim Acta; 2009 Oct; 408(1-2):83-6. PubMed ID: 19646979 [TBL] [Abstract][Full Text] [Related]
40. In vitro efficacy of frozen erythrocytes: implementation of new strategic blood stores to alleviate resource shortage (issue revisited). Cetinkaya RA; Yilmaz S; Eker I; Ünlü A; Uyanik M; Tapan S; Pekoğlu A; Pekel AA; Ertaş Z; Gürsel O; Muşabak UH; Yilmaz S; Avci IY; Çetin AT; Eyigün CP Turk J Med Sci; 2015; 45(3):638-43. PubMed ID: 26281332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]