These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 24600379)
21. Object width modulates object-based attentional selection. Nah JC; Neppi-Modona M; Strother L; Behrmann M; Shomstein S Atten Percept Psychophys; 2018 Aug; 80(6):1375-1389. PubMed ID: 29691762 [TBL] [Abstract][Full Text] [Related]
22. The Attentional Capture Debate: When Can We Avoid Salient Distractors and When Not? Theeuwes J J Cogn; 2023; 6(1):35. PubMed ID: 37426061 [TBL] [Abstract][Full Text] [Related]
24. The integration of visual and target signals in V4 and IT during visual object search. Roth N; Rust NC J Neurophysiol; 2019 Dec; 122(6):2522-2540. PubMed ID: 31618085 [TBL] [Abstract][Full Text] [Related]
26. Attentional spreading in object-based attention. Richard AM; Lee H; Vecera SP J Exp Psychol Hum Percept Perform; 2008 Aug; 34(4):842-53. PubMed ID: 18665730 [TBL] [Abstract][Full Text] [Related]
27. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1. Ekman M; Roelfsema PR; de Lange FP J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475 [TBL] [Abstract][Full Text] [Related]
28. Top-down control of exogenous attentional selection is mediated by beta coherence in prefrontal cortex. Dubey A; Markowitz DA; Pesaran B bioRxiv; 2023 Jan; ():. PubMed ID: 36711697 [TBL] [Abstract][Full Text] [Related]
29. Absence of attentional capture in parallel search is possible: a failure to replicate attentional capture in a non-singleton target search task. Wienrich C; Janczyk M Atten Percept Psychophys; 2011 Oct; 73(7):2044-52. PubMed ID: 21805210 [TBL] [Abstract][Full Text] [Related]
30. Visual-spatial working memory, attention, and scene representation: a neuro-cognitive theory. Schneider WX Psychol Res; 1999; 62(2-3):220-36. PubMed ID: 10472201 [TBL] [Abstract][Full Text] [Related]
31. Attentional capture by salient distractors during visual search is determined by temporal task demands. Kiss M; Grubert A; Petersen A; Eimer M J Cogn Neurosci; 2012 Mar; 24(3):749-59. PubMed ID: 21861683 [TBL] [Abstract][Full Text] [Related]
32. Disentangling the Role of Cortico-Basal Ganglia Loops in Top-Down and Bottom-Up Visual Attention: An Investigation of Attention Deficits in Parkinson Disease. Tommasi G; Fiorio M; Yelnik J; Krack P; Sala F; Schmitt E; Fraix V; Bertolasi L; Le Bas JF; Ricciardi GK; Fiaschi A; Theeuwes J; Pollak P; Chelazzi L J Cogn Neurosci; 2015 Jun; 27(6):1215-37. PubMed ID: 25514652 [TBL] [Abstract][Full Text] [Related]
33. Attentional spreading to task-irrelevant object features: experimental support and a 3-step model of attention for object-based selection and feature-based processing modulation. Wegener D; Galashan FO; Aurich MK; Kreiter AK Front Hum Neurosci; 2014; 8():414. PubMed ID: 24959132 [TBL] [Abstract][Full Text] [Related]
34. The attentional template in high and low similarity search: Optimal tuning or tuning to relations? Hamblin-Frohman Z; Becker SI Cognition; 2021 Jul; 212():104732. PubMed ID: 33862440 [TBL] [Abstract][Full Text] [Related]
35. Reward-based transfer from bottom-up to top-down search tasks. Lee J; Shomstein S Psychol Sci; 2014 Feb; 25(2):466-75. PubMed ID: 24335604 [TBL] [Abstract][Full Text] [Related]
36. Configural and contextual prioritization in object-based attention. Shomstein S; Yantis S Psychon Bull Rev; 2004 Apr; 11(2):247-53. PubMed ID: 15260189 [TBL] [Abstract][Full Text] [Related]